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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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Unit 8 Higher order linear equation : deals with higher order linear 

equation and homogeneous linear differential equation 

Unit 9 Wronskian and variation of constants : deals with wronskian and 

variation of constants also deals with wronskian theorem with its 

solution  

Unit 10 Matrix exponential solutions : deals with matrix exponential 

solution and exponential differential equation and solution 

Unit 11 Bvt for second order differential equation : deals with boundary 

value theorems for second order differential equation and solution 

Unit 12 Green’s function : deals with green’s function, green’s poison 

equation and fredholm theorems with its proof 

Unit 13 Sturm comparison theorems and oscillations : deals with strum 

comparison theorem and oscillations with its proof  
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UNIT 8: HIGHER ORDER LINEAR 

EQUATIONS 
 

STRUCTURE 

8.0 Objective 

8.1 Introduction 

8.2 Higher Order Differential Equations 

8.3 Higher Order Linear Equations: Introduction and Basic Results 

8.4 Homogeneous Linear Equations With Constant Coefficients 

8.4.1 The Polar Form of a Complex Number 

8.4.2 Non-homogeneous Linear Equations 

8.4.3 Method of Undetermined Coefficients or Guessing Method 

8.5 Method of Variation of Parameters 

8.6 Linear Approximations 

8.6.1 Linear Systems 

8.6.2 Vector Representations of Solutions 

8.6.3 Equilibrium Points of Homogeneous Linear Systems 

8.7 The Linearity Principle 

8.8 Let’s Sum Up 

8.9 Keyword 

8.10 Questions For Review 

8.11 Suggestion Reading and References 

8.12 Answer to Check in Progress 

8.0 OBJECTIVE  

 In this unit we study higher order differential equation 

 We also study Higher Order Linear Equations: Introduction and 

Basic Results 



Notes 

8 

 We study Homogeneous Linear Equations With Constant 

Coefficients 

 We study The Polar Form of a Complex Number 

 We study Nonhomogeneous Linear Equations 

 We study Equilibrium Points of Homogeneous Linear Systems 

8.1 INTRODUCTION  

In this chapter we’re going to take a look at higher order differential 

equations. This chapter will actually contain more than most text books 

tend to have when they discuss higher order differential equations. 

We will definitely cover the same material that most text books do here. 

However, in all the previous chapters all of our examples were 2
nd

 order 

differential equations or 2×2 systems of differential equations. So, in this 

chapter we’re also going to do a couple of examples here dealing with 

3
rd

 order or higher differential equations with Laplace transforms and 

series as well as a discussion of some larger systems of differential 

equations. 

8.2 HIGHER ORDER DIFFERENTIAL 

EQUATIONS 

Here is a brief listing of the topics in this chapter. 

Basic Concepts for nth Order Linear Equations – In this section we’ll 

start the chapter off with a quick look at some of the basic ideas behind 

solving higher order linear differential equations. Included will be 

updated definitions/facts for the Principle of Superposition, linearly 

independent functions and the Wronskian . 

Linear Homogeneous Differential Equations – In this section we will 

extend the ideas behind solving 2
nd

 order, linear, homogeneous 

differential equations to higher order. As we’ll most of the process is 

identical with a few natural extensions to repeated real roots that occur 

more than twice. We will also need to discuss how to deal with repeated 

complex roots, which are now a possibility. In addition, we will see that 
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the main difficulty in the higher order cases is simply finding all the 

roots of the characteristic polynomial. 

Undetermined Coefficients – In this section we work a quick example to 

illustrate that using undetermined coefficients on higher order differential 

equations is no different that when we used it on 2
nd

 order differential 

equations with only one small natural extension. 

Variation of Parameters – In this section we will give a detailed 

discussion of the process for using variation of parameters for higher 

order differential equations. We will also develop a formula that can be 

used in these cases. We will also see that the work involved in using 

variation of parameters on higher order differential equations can be 

quite involved on occasion. 

Laplace Transforms – In this section we will work a quick example using 

Laplace transforms to solve a differential equation on a 3
rd

 order 

differential equation just to say that we looked at one with order higher 

than 2
nd

. As we’ll see, outside of needing a formula for the Laplace 

transform of y′′′, which we can get from the general formula, there is no 

real difference in how Laplace transforms are used for higher order 

differential equations. 

Systems of Differential Equations – In this section we’ll take a quick 

look at extending the ideas we discussed for solving 2×2 systems of 

differential equations to systems of size 3×3. As we will see they are 

mostly just natural extensions of what we already know who to do. We 

will also make a couple of quick comments about 4×4 systems. 

Series Solutions – In this section we are going to work a quick example 

illustrating that the process of finding series solutions for higher order 

differential equations is pretty much the same as that used on 2
nd

 order 

differential equations. 

8.3 HIGHER ORDER LINEAR 

EQUATIONS: INTRODUCTION AND 

BASIC RESULTS 
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Let us consider the equation 

, 

and its associated homogeneous equation 

 

The following basic results hold: 

(1)Superposition principle 

Let  be solutions of the equation (H). Then, the function 

 

is also solution of the equation (H). This solution is called a linear 

combination of the functions ; 

(2)The general solution of the equation (H) is given by 

 

where  are arbitrary constants 

and  are n solutions of the equation (H) such that, 

 

In this case, we will say that  are linearly 

independent. The function  is called 

the Wronskian of  . We have 
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Therefore,  , for some , if and only 

if,  for every x; 

(3)The general solution of the equation (NH) is given by 

 

where  are arbitrary 

constants,  are linearly independents solutions of 

the associated homogeneous equation (H), and  is a 

particular solution of (NH). 

8.4 HOMOGENEOUS LINEAR 

EQUATIONS WITH CONSTANT 

COEFFICIENTS 

Consider the nth-order linear equation with constant coefficients 

 

with  . In order to generate n linearly independent solutions, we 

need to perform the following: 

(1)Write the characteristic equation 

 

Then, look for the roots. These roots will be of two natures: 

simple or multiple. Let us show how they generate independent 

solutions of the equation(H). 

(2)First case: Simple root 

Let r be a simple root of the characteristic equation. 

(2.1) 

If r is a real number, then it generates the solution  ; 

(2.2) 
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If  is a complex root, then since the coefficients of 

the characteristic equation are real,  is also a root. The 

two roots generate the two 

solutions  and ; 

(3)Second case: Multiple root 

Let r be a root of the characteristic equation with multiplicity m. If r is a 

real number, then generate the m independent solutions 

 

If  is a complex number, then  is also a root 

with multiplicity m. The two complex roots will generate 

2m independent solutions 

 

Using properties of roots of polynomial equations, we will 

generate n independent solutions  . Hence, the general 

solution of the equation (H) is given by 

 

Therefore, the real problem in solving (H) has to do more with finding 

roots of polynomial equations. We urge students to practice on this. 

Example: Find the general solution of 

 

Solution: Let us follow these steps: 

(1)Characteristic equation 

 

Its roots are the complex numbers 
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In the analytical form, these roots are 

; 

(2)Independent set of solutions 

(2.1)The complex roots  and  generate the two 

solutions 

; 

(2.2)The complex roots  and  generate the two 

solutions 

; 

(3)The general solution is 

 

As you may have noticed in this example, complex numbers do get 

involved very much in this kind of problem... 

8.4.1 The Polar Form of a Complex Number 

The fundamental trigonometric identity (i.e the Pythagorean theorem) is 

 

From this we can see that the complex numbers 
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are points on the circle of radius one centered at the origin. 

Think of the point  moving counterclockwise around the 

circle as the real number  moves from left to right. Similarly, the point 

moves clockwise if  decreases. And whether  increases or decreases, 

the point returns to the same position on the circle whenever  changes 

by  or by  or by  where k is any integer. 

Exercise: Verify that 

 

Exercise: Prove de Moivre's formula 

 

Now picture a fixed complex number on the unit circle 

 

Consider multiples of z by a real, positive number r. 

 

As r grows from 1, our point moves out along the ray whose tail is at the 

origin and which passes through the point z. As r shrinks from 1 toward 

zero, our point moves inward along the same ray toward the origin. The 

modulus of the point is r. We call the angle  which this ray makes with 

the x-axis, the argument of the number z. All the numbers rz have the 

same argument. We write 

 

Just as a point in the plane is completely determined by its polar 

coordinates  , a complex number is completely determined by its 

modulus and its argument. 
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Notice that the argument is not defined when r=0 and in any case is only 

determined up to an integer multiple of  . 

Why not just use polar coordinates? What's new about this way of 

thinking about points in the plane? 

8.4.2 Non-homogeneous Linear Equations 

Consider the nonhomogeneous linear equation 

 

We have seen that the general solution is given by 

, 

where  is a particular solution and  is the general solution of the 

associated homogeneous equation. We will not discuss the case of non-

constant coefficients. Therefore, we will restrict ourself only to the 

following type of equation: 

 

Using the previous section, we will discuss how to find the general 

solution of the associated homogeneous equation 

 

Therefore, the only remaining obstacle is to find a particular solution to 

(NH). In the second order differential equations case, we learned the two 

methods: Undetermined Coefficients Method and the Variation of 

Parameters. These two methods are still valid in the general case, but the 

second one is very hard to carry. 

8.5.3 Method of Undetermined Coefficients or 

Guessing Method 

As for the second order case, we have to satisfy two conditions. One is 

already satisfied since we assumed that our equation has constant 
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coefficients. The second condition has to do with the non-homogeneous 

term g(x). Indeed, in order to use the undetermined coefficients 

method, g(x) should be one of the elementary forms 

, 

where  is a polynomial function. For a more general case, see the 

remark below. In order to guess the form of the particular solution we 

follow these steps: 

(1)Write down the characteristic equation 

 

Find its roots and (especially) their multiplicity. Note that it will help 

strongly if you factorize this equation. This way you get the roots and 

their multiplicity; 

(2)Write down the number  (which you generate from g(x)). 

Then, 

(2.1)if  is not one of the root of the characteristic equation, then 

set s=0; 

(2.2)if  is one of the root of the characteristic equation, then s is 

its multiplicity; 

(3)Write down the guessed form for the particular solution 

, 

where T(x) and R(x) are two polynomial functions with degree(T) 

= degree(R) = degree(P). So, if the degree of P is m, there are 2m+2 

coefficients to be determined; 

(4)Plug  into the equation (NH) to determine the coefficients 

of T and R; 

(5)Write down your final answer for  . 
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Remark: The undetermined coefficients method can still be used if 

, 

where  has the elementary form described above. Indeed, we need 

(as we did for the second order case) to split the equation (NH) 

into m equations. Find the particular solution to each one, then add them 

to generate the particular solution of the original equation. 

Example: Find a particular solution of 

 

Solution: Let us follow these steps: 

(1)Characteristic equation 

 

We have the factorization  . 

Therefore, the roots are 0,2,-2 and they are all simple. 

(2)We have to split the equation into the following two equations: 

; 

(3)The particular solution to the equation (1): 

(3.1)We have  which is a simple root. Then s = 1; 

(3.2)The guessed form for the particular solution is 

, 

where A and B are to be determined. We will omit the detail of 

the calculations. We get A = -1/8 and B=0. Therefore, we have 
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; 

(4)The particular solution to the equation (2): 

(4.1)We have  which is not a root. Then s = 0; 

(4.2)The guessed form for the particular solution is 

 

where A and B are to be determined. We will omit the detail of 

the calculations. We get A = 0 and B=-3/5. Therefore, we have 

; 

(5)The particular solution to the original equation is given by 

 

Check In Progress-I 

Q. 1 Find a particular solution of 

 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Find the general solution of 

 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

8.5 METHOD OF VARIATION OF 

PARAMETERS 

This method is interesting whenever the previous method does not apply 

(when g(x) is not of the desired form). The general idea is similar to what 

we did for second order linear equations except that, in that case, we 

were dealing with a small system and here we may be dealing with a 

bigger one (depending on the order of the differential equation). Let us 

describe the general case (constant coefficients or not). Consider the 

equation 

 

Suppose that a set of independent solutions  of the 

associated homogeneous equation is known. Then a particular solution 

can be found as 

 

where the functions  can be obtained from the 

following system: 

. 

The determinant of this system is the Wronskian of , which 

is not zero. Cramer's formulas will give 

, 
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where W(x) is the Wronskian  and  is the 

determinant obtained from the Wronskian W by replacing the  -

column in the vector column (0,0,..,0,1). Consequently, a particular 

solution to the equation (NH) is given by 

 

Note that when the order of the equation is not high, you may want to 

solve the system using techniques other than Cramer's formulas. 

Example: Find a particular solution of 

 

Solution: Let us follow these steps: 

(1)Characteristic equation 

 

Since  , the roots of the characteristic 

equation are  . Therefore, a set of independent solutions 

is ; 

(2)A particular solution is given 

by , where  are 

solutions of the system 

; 

(3)The resolution of the system gives 
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After integration we get 

; 

(4)A particular solution is given by 

 

Note that the constant 1 in  may be dropped since it is the 

solution of the associated homogeneous equation. 

8.6 LINEAR APPROXIMATIONS 

This approximation is crucial to many known numerical techniques such 

as Euler's Method to approximate solutions to ordinary differential 

equations. The idea to use linear approximations rests in the closeness of 

the tangent line to the graph of the function around a point. 

Let x0 be in the domain of the function f(x). The equation of the tangent 

line to the graph of f(x) at the point (x0,y0), where y0 = f(x0), is 

 

 

 

If x1 is close to x0, we will write , and we will 

approximate  by the point (x1,y1) on the tangent line given 

by 
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If we write , we have 

 

 

In fact, one way to remember this formula is to write f'(x) as  and 

then replace d by . Recall that, when x is close to x0, we have 

 

 

 

Example. Estimate . 

Let . We have . Using the above 

approximation, we get 

 

 

We have 

 

 

 

So . Hence 

 

 

 

 

or . Check with your calculator and you'll see that this 

is a pretty good approximation for . 
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Remark. For a function f(x), we define the differential df of f(x) by 

 

Example. Consider the function y = f(x) = 5x
2
. Let  be an increment 

of x. Then, if  is the resulting increment of y, we have 

 

 

On the other hand, we obtain for the differential dy: 

 

 

 

In this example we are lucky in that we are able to compute  exactly, 

but in general this might be impossible. The error in the approximation, 

the difference between dy(replacing dx by ) and , is , 

which is small compared to . 

Exercise 1. Use linear approximation to approximate 

 

Answer : We will use the fact that . Set 

 

 

Then 

                                  



Notes 

24 

 

Thus 

 

 

Exercise 2. Use linear approximation to approximate 

 

Answer : Let us start by observing that if , then 

both  and  are known by elementary geometry: 

 

 

 

Thus we can approximate 

 

 

 

 

8.6.1 Linear Systems 

Most of real life problems involve nonlinear systems (the predator-prey 

model is one such example). The nonlinear systems are very hard to 

solve explicitly, but qualitative and numerical techniques may help shed 

some information on the behavior of the solutions. But there are 

examples which are modeled by linear systems (the spring-mass model is 

one of them). Recall that a linear system of differential equations is given 

as 
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Example: The Harmonic Oscillator 

This is a model for the motion of mass attached to a spring. Let x(t) be 

the displacement (which is the position of the mass from the equilibrium 

position or the rest position). Newton's Law of mechanics gives 

, 

where  is the acceleration,  is the restoring force provided by 

the spring,  is the damping force, and F(t) is an external force 

acting on the mass (such as an electrical field or a magnetic field for 

example). This is a second order differential equation. It may be 

translated to a system of first order differential system as 

 

where v is the velocity of the mass at time t. Clearly we have a linear 

system. 

Definitions:  If f(t)=g(t) = 0, then the linear system is 

called homogeneous and reduces to 
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Otherwise, it is called nonhomogeneous. 

a, b, c, d are called the coefficients of the system. If all are 

constants then the system is said to be linear with constant 

coefficients. 

Clearly, we may use our previous knowledge about systems for the linear 

ones. For example, we may associate the direction field to the linear 

system as well. 

Example: Draw the direction field of the system 

 

as well as some solutions. 

8.6.2 Vector Representations of Solutions 

Consider the linear system of differential equations 

 

This system may be rewritten using matrix-notation. Indeed, set 

, 

then the above system is equivalent to the matricial equation 

. 
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Using the matrix product, we get 

. 

The matrix 

 

is called the coefficient matrix of the system. Note that the coefficients of 

the matrix A can be constant or not. The vector function 

 

is called the nonhomogeneous term. 

Remark: One may think that the equation above is only valid for linear 

systems of two equations. However, that is not the case. For example, 

consider the linear system 

 

Then, in matricial notation, the system is equivalent to 

, 

where 
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. 

8.6.3 Equilibrium Points of Homogeneous Linear 

Systems 

Consider the homogeneous linear system 

 

The equilibrium points are given by the equations 

 

Clearly, x=0 and y=0 give a trivial solution. Hence, the 

function  gives a constant solution to the linear system. 

We call it the trivial solution. In general, the equilibrium points are the 

intersection between two lines. Since the two lines intersect, they are the 

same (if parallel) or the intersection is reduced to one point. So, the set of 

equilibrium points is the entire line ax+by=0, or the trivial point (0,0). 

This conclusion is related to the determinant of the matrix coefficient. 

Indeed, if 

 

is not equal to 0 (zero), then we have one equilibrium point (the trivial 

one). 

Check In Progress-II 

Q. 1 Define linear system. 
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Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

Q. 2 Find a particular solution of 

 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

8.7 THE LINEARITY PRINCIPLE 

This is may be the most important property for linear systems. Consider 

the homogeneous linear system 

, 

then 

1. if Y(t) is a solution and k is a constant, then k Y(t) is also a solution; 

2. if  and  are two solutions, then  is also a solution. 

This clearly implies that if  and  are two solutions and  and  are 

two arbitrary constants, then 
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is also a solution. This conclusion is also known as the Principle of 

Superposition. 

Clearly, from the Principle of Superposition, we may generate plenty of 

solutions once two solutions are known. The natural question to ask 

therefore, is whether we have obtained all the solutions. In order to better 

appreciate this problem let's consider the following example. 

Example: Consider the linear system 

 

Show that any solution Y to this system is given as 

, 

where 

 

and  and  are two constants. 

Answer: It is easy to check that indeed  and  are solutions to the 

given system. Let Y be any solution. Set 

. 

By the uniqueness and existence theorem, Y is the only solution to the 

IVP 

. 
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Let us find  and  such that  . If this is the case, 

we should have , which gives 

, 

which implies 

 

Clearly, this gives 

. 

Consider the function 

. 

The linearity principle implies that  is a solution. And, since 

, 

the uniqueness and existence theorem implies that in 

fact  gives the desired conclusion. 

Remark: When you look at the above example you will notice that what 

made the conclusion work is that we were able to solve the algebraic 

system 

 

and this was possible because the two vectors 
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are linearly independent. In fact, the above conclusion is always valid 

whenever we have a linear independence around. 

Theorem: The General Solution 

Suppose  and  are two solutions to the linear system 

. 

Assume that the vectors  and  are linearly independent. 

Then, the solution to the IVP 

, 

is given by 

, 

for some constants  and  . In this case, the two-parameter family 

, 

where  and  are arbitrary constants, is called the general solution of 

the system. Then, the two solutions  and  are said to be linearly 

independent. 

Example: Consider the undammed harmonic oscillator 

. 

Show that any solution x is given by 
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. 

Answer: Consider the associated linear system 

 

Set  . Note that the second component is just the derivative 

of the first one. Consider the two vector functions 

 

It is easy to check that these two vector functions are in fact solutions to 

the given system. Also, you may check that the two vectors 

 

are linearly independent. Therefore, any solution Y of the system is given 

by 

, 

where  and  are two constants. Using the first component of Y, we 

see that any solution x(t) of the equation is given by 

, 

where  and  are two arbitrary constants. 

8.8 LET’S SUM UP 

 Here in this unit we study consider the equation 



Notes 

34 

            

, 

                  and its associated homogeneous equation 

                 

 

 We learnt nth-order linear equation with constant coefficients 

            

 

                       with  . In order to generate n linearly independent 

solutions. 

 We study characteristic equation 

 

 We study The equation of the tangent line to the graph of f(x) at 

the point (x0,y0), where y0 = f(x0), is 

 

 We study the homogeneous linear system 

 

8.9 KEYWORD 

Undamped : not damped or dampened; undiminished, as in energy, vigor 

Harmonic Oscillator : A harmonic oscillator is a system that, when 

displaced from its equilibrium position, experiences a restoring force F 

proportional to the displacement x: ... If a frictional force (damping) 
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proportional to the velocity is also present, the harmonic oscillator is 

described as a damped oscillator 

Variation : A change or slight difference in condition, amount, or level, 

typically within certain limits 

8.10 QUESTIONS FOR REVIEW 

Q. 1 Consider the linear system 

 

Show that any solution Y to this system is given as 

, 

Where  

and  and  are two constants. 

Q. 2 Use linear approximation to approximate 

 

Q. 3 Find the general solution of 

 

Q. 4 Find a particular solution of 

 

Q. 5 Use linear approximation to approximate 
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8.12 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 5.3 

 Q. 2 Check in Section 5 

Check In progress-II 

Answer Q. 1 Check in Section 7.1 

 Q. 2 Check in Section 6 
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UNIT 9: WRONSKIAN AND 

VARIATION OF CONSTANTS 
 

STRUCTURE 

9.0 Objectives 

9.1 Introduction 

9.2 Wronskian 

9.2.1 Wronski Determinant 

9.2.2 Linear Independence and the Wronskian 

9.3 Liouville-Ostrogradski Formula 

9.4 Variation of Constants 

9.4.1 Cauchy Problem 

9.5 Fundamental Solution 

9.5.1 Fundamental System of Solutions 

9.6 Let’s Sum Up 

9.7 Keyword 

9.8 Questions For Review 

9.9 Suggestion Reading And References 

9.10 Answer to Check in Progress 

9.0 OBJECTIVES 

 In this unit we study Wronskian and Variation of Constants  

 We also study Wronski Determinants  

 We also study Linear Independence and the Wronskian 

 WE STUDY LIOUVILLE-OSTROGRADSKI FORMULA 

 We learn Variation of Constants with examples  

 WE STUDY CAUCHY PROBLEM, CAUCHY PIANO WITH 

EXAMPLES 

 We study Fundamental Solution of a linear partial differential 

equation 

9.1 INTRODUCTION 

The Wronskian of a set of  functions , , ... is defined by 
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If the Wronskian is nonzero in some region, the functions  are linearly 

independent. If  over some range, the functions are linearly 

dependent somewhere in the range. 

The idea of the method of variation of constants is that the 

arbitrary constants participating in the general solution of the 

homogeneous system are replaced by functions of an independent 

variable. ... This formula is sometimes called the formula of variation of 

constants (cf. also Linear ordinary differential equation) 

9.2 WRONSKIAN 

Let  and  be two differentiable functions. We will say 

that  and  are proportional if and only if there exists a 

constant C such that  . Clearly any function is proportional to 

the zero-function. If the constant C is not important in nature and we are 

only interested into the proportionality of the two functions, then we 

would like to come up with an equivalent criteria. The following 

statements are equivalent: 

  and  are proportional; 

  is a constant function; 

  ; 

  . 

Therefore, we have the following: 

 and  are not proportional if, and only if, . 
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Define the Wronskian  of  and  to be  , that 

is 

 

The following formula is very useful  

 

Remark: Proportionality of two functions is equivalent to their linear 

dependence. Following the above discussion, we may use the Wronskian 

to determine the dependence or independence of two functions. In fact, 

the above discussion cannot be reproduced as is for more than two 

functions while the Wronskian does.... 

9.2.1 Wronski Determinant 
The determinant of a system of n vector-functions of dimension n, 

ϕi(t)={ϕ1i(t),…,ϕni(t)},                                   i=1,…,n 

of the type 

 

The Wronskian of a system of  scalar functions 

 

(2) 

which have derivatives up to order  (inclusive) is the 

determinant 

 

(3) 

The concept was first introduced by J. Wronski [1]. 
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If the vector-functions (1) are linearly dependent on a set , then 

 

If the scalar functions (2) are linearly dependent on a set , then 

 

The converse theorems are usually not true: Identical vanishing of a 

Wronskian on some set is not a sufficient condition for linear 

dependence of  functions on this set. 

Let the vector-functions (1) be the solutions of a linear homogeneous -

th order system , , with an -dimensional 

matrix  that is continuous on an interval . If these solutions 

constitute a fundamental system, then 

 

If the Wronskian of these solutions is equal to zero in at least one point 

of , it is identically equal to zero on , and the functions (1) are linearly 

dependent. The Liouville formula 

 

 

where  is the trace of the matrix , is applicable. 

Let the functions (2) be the solutions of a linear homogeneous -th order 

equation 

 

with continuous coefficients on the interval . If these solutions 

constitute a fundamental system, then 

 

If the Wronskian of these solutions is zero in at least one point of , it is 

identically equal to zero on , and the functions (2) are linearly 

dependent. The Liouville formula 
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applies. 

9.2.2 Linear Independence and the Wronskian 

Let  and  be two differentiable functions. 

The Wronskian  , associated to  and  , is the function 

 

For a discussion on the motivation behind the Wronskian,  

We have the following important properties: 

(1)If  and  are two solutions of the equation y'' + p(x)y' + q(x)y = 0, 

then 

 

(2)If  and  are two solutions of the equation y'' + p(x)y' + q(x)y = 0, 

then 

 

In this case, we say that  and  are linearly independent. 

(3)If  and  are two linearly independent solutions of the equation y'' 

+ p(x)y' + q(x)y = 0, then any solution y is given by 

 

for some constant  and  . In this case, the set  is 

called the fundamental set of solutions. 

Example: Let  be the solution to the IVP 
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and  be the solution to the IVP 

 

Find the Wronskian of  . Deduce the general solution to 

 

Solution: Let us write  . We know from the 

properties that 

 

Let us evaluate W(0). We have 

 

Therefore, we have 

 

Since  , we deduce that  is a fundamental set of 

solutions. Therefore, the general solution is given by 

, 

where  are arbitrary constants. 

 

9.3 LIOUVILLE-OSTROGRADSKI 

FORMULA 
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A relation that connects the Wronskian of a system of solutions and the 

coefficients of an ordinary linear differential equation. 

Let  be an arbitrary system of  solutions of a 

homogeneous system of  linear first-order equations 

 

(1) 

with an operator  that is continuous on an interval , and let 

 

be the Wronskian of this system of solutions. The Liouville–Ostrogradski 

formula has the form 

 

(2) 

or, equivalently, 

 

 

Here  is the trace of the operator . The Liouville–

Ostrogradski formula can be written by means of the Cauchy 

operator  of the system (1) as follows: 

 

(4) 

The geometrical meaning of (4) (or ) is that as a result of the 

transformation  the oriented volume of any body is 

increased by a factor . 

If one considers a linear homogeneous -th order equation 

 

(5) 

with continuous coefficients on an interval , and if  for , 

then the Liouville–Ostrogradski formula is the equality 

 

(6) 
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where  is the Wronskian of the system 

of  solutions  of (5). The Liouville–Ostrogradski 

formulas , (6) are ordinarily used in the case when the system of 

solutions in question is fundamental (cf. Fundamental system of 

solutions). For example, formula (6) makes it possible to find by 

quadratures the general solution of a linear homogeneous equation of the 

second order if one knows one particular non-trivial solution of it. 

The relation (6) for equation (5) with  was found by N.H. Abel in 

1827 (see [1]), and for arbitrary  in 1838 by J. Liouville [2] and M.V. 

Ostrogradski [3]; the equality 

was obtained by Liouville [2] and C.G.J. Jacobi [4] (as a consequence of 

this, 

is sometimes called the Jacobi formula). 

The Liouville–Ostrogradski formula (2) can be generalized to a non-

linear system 

 

(7) 

under the assumption that the vector-valued function 

 

and the matrix  are continuous. If  is a set of finite 

measure  and the image  of this set under the linear 

mapping , where  is the Cauchy operator of 

the system (7), has measure , then 

 

here 
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This implies Liouville's theorem on the conservation of phase volume, 

which has important applications in the theory of dynamical systems and 

in statistical mechanics, mathematical problems in: The flow of a 

smooth autonomous system 

 

does not change the volume of any body in the phase space  if and 

only if  for all ; in particular, the phase volume is 

conserved by the flow of a Hamiltonian system. 

4.1 Check In Progress-I 

Q. 1 Define Wronskian.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Define Linear Independence of Wronskian.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

9.4 VARIATION OF CONSTANTS 

A method for solving inhomogeneous (non-homogeneous) linear 

ordinary differential systems (or equations). For an inhomogeneous 

system, this method makes it possible to write down in closed form 

the general solution, if the general solution of the corresponding 

homogeneous system is known. The idea of the method of variation of 
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constants is that the arbitrary constants participating in the general 

solution of the homogeneous system are replaced by functions of an 

independent variable. These functions must be chosen such that the 

inhomogeneous system is fulfilled. In concrete problems, this method 

was already applied by L. Euler and D. Bernoulli, but its complete 

elaboration was given by J.L. Lagrange . 

Suppose one considers the Cauchy problem for the inhomogeneous 

linear system 

 

(1) 

where 

 

 

are mappings that are summable on every finite interval, and 

where . If  is the fundamental matrix solution 

(cf. Fundamental solution) of the homogeneous system 

 

(2) 

then , , is the general solution of (2). The method of 

variation of constants consists of a change of variable in (1): 

 

and leads to the Cauchy formula for the solution of (1): 

 

This formula is sometimes called the formula of variation of constants 

(cf. also Linear ordinary differential equation). 

The idea of the method of variation of constants can sometimes be used 

in a more general non-linear situation for the description of the relation 

between the solution of a perturbed complete system and that of an 

unperturbed truncated system. E.g., for the solution  of the problem 
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(where  are continuous mappings and in the case of uniqueness of a 

solution) the formula of variation of constants is valid. It takes the form 

of the integral equation 

 

In it,  is the fundamental matrix solution of (2). 

 

9.4.1 Cauchy Problem 

One of the fundamental problems in the theory of (ordinary and partial) 

differential equations: To find a solution (an integral) of a differential 

equation satisfying what are known as initial conditions (initial data). 

The Cauchy problem usually appears in the analysis of processes defined 

by a differential law and an initial state, formulated mathematically in 

terms of a differential equation and an initial condition (hence the 

terminology and the choice of notation: The initial data are specified 

for  and the solution is required for ). Cauchy problems differ 

from boundary value problems in that the domain in which the desired 

solution must be defined is not specified in advance. Nevertheless, 

Cauchy problems, like boundary value problems, are defined by the 

imposition of limiting conditions for the solution on (part of) the 

boundary of the domain of definition. 

The main questions connected with Cauchy problems are as follows: 

1) Does there exist (albeit only locally) a solution? 

2) If the solution exists, to what space does it belong? In particular, what 

is its domain of existence? 

3) Is the solution unique? 

4) If the solution is unique, is the problem well-posed, i.e. is the solution 

in some sense a continuous function of the initial data? 

The simplest Cauchy problem is to find a function  defined on the 

half-line , satisfying a first-order ordinary differential equation 
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(1) 

(  is a given function) and taking a specified value  at : 

 

(2) 

In geometrical terms this means that, considering the family of integral 

curves of equation (1) in the -plane, one wishes to find the curve 

passing through the point . 

The first proposition concerning the existence of such a function (on the 

assumption that  is continuous for all  and continuously differentiable 

with respect to ) was proved by A.L. Cauchy (1820–1830) and 

generalized by E. Picard (1891–1896) (who replaced differentiability by 

a Lipschitz condition with respect to ). It turns out that under those 

conditions the Cauchy problem has a unique solution which, moreover, 

depends continuously on the initial data. Modern concepts of the Cauchy 

problem are essentially a far-reaching generalization of this problem. 

The fact that questions 1) to 4) touch profoundly on the very heart of the 

matter — i.e. to answer them satisfactorily requires the imposition of 

certain conditions — is already illustrated in the theory of ordinary 

differential equations. Thus, a solution of the Cauchy problem for 

equation (1) with the condition (2), where  is given on an open 

set  and is only continuous, exists on some interval depending 

on  and  (see Peano theorem), but it need not be unique. The 

solution need not exist at all points in the domain of definition of . 

Repeating the above account almost word for word, one formulates the 

Cauchy problem for systems of ordinary differential equations, i.e. for an 

ordinary differential equation of type (1) with initial condition (2), 

where  is a function with values in a finite-dimensional vector 

space , , and  is a function defined in 

. Here, again, the Picard conditions are sufficient for the existence and 

uniqueness of the solution and for the problem to be well-posed. 

For ordinary differential equations of a higher order, 
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the Cauchy problem the initial data of which involve, besides the 

function itself, the derivatives 

 

can be reduced by the standard device to a corresponding problem of 

type (1), (2). 

In the case of first-order ordinary differential equations which cannot be 

expressed directly in terms of the derivative of the unknown function (as 

in equation (1)), the formulation of the Cauchy problem is similar, except 

that it relies to a high degree on the geometrical interpretation; however, 

the actual investigation of the equation may be complicated by the 

impossibility of (even locally) reducing the equation to the normal form 

(1). 

While neither the formulation nor the investigation of the Cauchy 

problem for an ordinary differential equation involve essential 

difficulties, the situation is considerably more complicated in the case of 

partial differential equations (this applies, in particular, to answering 

questions 1) to 4)). This is true even if the functions involved are 

sufficiently regular (smooth). A major source of the difficulty is the fact 

that the space of independent variables is higher-dimensional, resulting 

in problems of (algebraic) solvability. E.g., consider the Cauchy problem 

for a system of equations in total differentials, 

 

such equations being in a sense intermediate between "ordinary" and 

"partial" differential equations. The problem here is to determine 

an -dimensional integral surface passing through a given point. 

Then the solvability condition is 

 

(in a neighbourhood of the given point; here  are the symbols for 

the exterior differential and the exterior product, respectively) 

(see Frobenius theorem). 

For linear partial differential equations 
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(3) 

the Cauchy problem may be formulated as follows. In a certain 

region  of the variables  it is required to find a 

solution satisfying initial conditions, i.e. taking specified values, together 

with its derivatives of order up to and including , on 

some -dimensional hypersurface  in . This hypersurface is 

known as the carrier of the initial conditions (or the initial surface). The 

initial conditions may be given in the form of derivatives of  with 

respect to the direction of the unit normal  to : 

 

(4) 

where the , , are known functions (Cauchy data). 

The formulation of the Cauchy problem for non-linear differential 

equations is similar. 

A concept related to the Cauchy problem is that of a non-characteristic 

surface. If a non-singular coordinate transformation  "straightens 

out" the surface  in a neighbourhood of , i.e. it transforms it into a 

part of the hyperplane , then the coefficient of  in 

the transformed equation (3) is proportional to 

 

The surface  is said to be non-characteristic at the point  if 

 

(5) 

In that case equation (3) may be written in a neighbourhood of  in the 

so-called normal form: 

 

(6) 

Cauchy problems are usually studied when the carrier of the initial data 

is a non-characteristic surface, i.e. when condition (5) holds for 

all . 
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The Cauchy–Kovalevskaya theorem occupies an important position in 

the theory of Cauchy problems; it runs as follows. If  is an analytic 

surface in a neighbourhood of one of its points , if the functions 

,  and , , are analytic in the same neighbourhood, 

and if moreover condition (5) is satisfied, then the Cauchy problem (3), 

(4) has an analytic solution  in a neighbourhood of the point; this 

solution is unique in the class of analytic functions. With the analyticity 

assumption, this theorem is also valid for general non-linear equations if 

the latter can be reduced to the normal form (6), and also for systems of 

such equations. The theorem is universal in nature, since it is applicable 

to analytic equations regardless of their type (elliptic, hyperbolic, etc.) 

and yields the local existence of a solution. The solution is unique in the 

class of non-analytic functions. 

The Cauchy problem for partial differential equations of order exceeding 

1 may turn out to be ill-posed if one drops the analyticity assumption for 

the equation or for the Cauchy data in the Cauchy–Kovalevskaya 

theorem. An illustration is Hadamard's example: The Cauchy problem 

for the Laplace equation 

 

with initial conditions 

 

has no solution if  is not an analytic function. 

The hyperbolic equations constitute a broad class of equations for which 

the Cauchy problem is well-posed. In this case the Cauchy problem is 

global in nature, but the condition that  be non-characteristic is no 

longer sufficient. It is necessary that  is a space-like surface. A typical 

hyperbolic equation is the wave equation 

 

(7) 

considered in an -dimensional region, with 

variables . The Cauchy problem for this equation 

with data 
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on the hyperplane  is uniquely solvable for any sufficiently smooth 

functions , and the solution depends continuously (in 

some  metric) on these functions. For the cases  and , 

an explicit form of the solution is given by the formulas of d'Alembert, 

Poisson and Kirchhoff, respectively: 

 

 

 

where , ; 

 

 

where , , and  is the surface 

element on the unit sphere . 

The set of points in the plane  for which the Cauchy data 

completely determine the value  of the solution of the wave 

equation (7) at a point  is called the domain of dependence of the 

latter point. The domains of dependence of the point  in the 

cases  and  are, respectively, the closed interval, disc and 

ball defined by  (in the appropriate space ). If the carrier 

of the Cauchy data is some region  on the hyperplane , then the 

Cauchy data in that region affect the solution at all points  of the 

set such that the intersection  is not empty; this set 

is known as the domain of influence. 
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The set of points  at which the solution  is completely 

determined by the Cauchy data on  is called the domain of definition 

of  with initial data on . In cases  and 3 the domain of 

definition consists of all points  for which the closed interval, disc 

or ball,  (as the case may be), lies in . 

These results carry over to the more general case in which the carrier of 

the Cauchy data is a surface  of spatial type, i.e. a surface for 

which  (see (5)) remains positive on . 

There are other problems besides the Cauchy problem which prove to be 

well-posed for hyperbolic equations; examples are the Cauchy 

characteristic problem and mixed initial-boundary value problems. In the 

latter type of problem, a solution exists in an -dimensional 

cylinder with generatrix parallel to the -axis and a base  which is some 

region in the space of variables  with boundary . The 

carrier of the initial conditions is , while the value of the function, its 

normal derivative (in the case of second-order equations), or more 

general boundary value conditions, are given on the lateral 

surface  of the cylinder. 

In the case of degenerate equations the formulation of the Cauchy 

problem also has to be modified. For example, if the equation is of 

hyperbolic type and the carrier of the Cauchy data is a surface on which 

the equation becomes parabolically degenerate, then, depending on the 

nature of degeneracy, the initial value conditions may involve the use of 

some weight function. 

 

9.5 FUNDAMENTAL SOLUTION 

A solution of a partial differential equation , , with 

coefficients of class , in the form of a function  that satisfies, 

for fixed , the equation 
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which is interpreted in the sense of the theory of generalized functions, 

where  is the delta-function. There is a fundamental solution for every 

partial differential equation with constant coefficients, and also for 

arbitrary elliptic equations. For example, for the elliptic equation 

 

with constant coefficients  forming a positive-definite matrix , a 

fundamental solution is provided by the function 

 

where  is the cofactor of  in the matrix . 

Fundamental solutions are widely used in the study of boundary value 

problems for elliptic equations. 

Check In Progress-II 

Q. 1 Define Variation of Constants. 

 Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . 

. . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . 

. .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Define Cauchy Problem.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

9.5.1 Fundamental System of Solutions 
Fundamental system of solutions of a linear homogeneous system of 

ordinary differential equations 

A basis of the vector space of real (complex) solutions of that system. 

(The system may also consist of a single equation.) In more detail, this 

definition can be formulated as follows. 

A set of real (complex) solutions  (given on some 

set ) of a linear homogeneous system of ordinary differential equations 

is called a fundamental system of solutions of that system of equations 

(on ) if the following two conditions are both satisfied: 1) if the real 

(complex) numbers  are such that the function 

 

is identically zero on , then all the numbers  are zero; 2) for 

every real (complex) solution  of the system in question there are 

real (complex) numbers  (not depending on ) such that 

 

If  is an arbitrary non-singular -dimensional matrix, 

and  is a fundamental system of solutions, 

then  is also a fundamental 

system of solutions; every fundamental system of solutions can be 

obtained by such a transformation from a given one. 

If a system of differential equations has the form 

 

(1) 

where  (or ), if 

 

 

and if the mapping  is summable on every segment contained 

in  (  is a bounded or unbounded interval in ), then 

the vector space of solutions of this system is isomorphic 
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to  (respectively, ). Consequently, the system (1) has an infinite set 

of fundamental systems of solutions, and each such fundamental system 

consists of  solutions. For example, for the system of equations 

 

an arbitrary fundamental system of solutions has the form 

 

where 

 

are arbitrary linearly independent column vectors. 

Every fundamental system of solutions of (1) has the form 

 

where  is the Cauchy operator of (1),  is an arbitrary fixed 

number in , and  is an arbitrary fixed basis 

of  (respectively, ). 

If the system of differential equations consists of the single equation 

 

(2) 

where the functions 

 

are summable on every segment contained in  (  is a 

bounded or unbounded interval in ), then the vector space of solutions 

of this equation is isomorphic to  (respectively, ). Consequently, 

the equation (2) has infinitely many fundamental sets of solutions, and 

each of them consists of  solutions. For example, the equation 

 

has fundamental system of solutions ; the general 

real solution of this equation is given by the formula 

 

where  and  are arbitrary real constants. 
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If a system of differential equations has the form 

 

(3) 

where  (or ) and if for all  the mappings 

 

 

are summable on every segment contained 

in  (where  is a bounded or unbounded interval in 

), then the space of solutions of this system is isomorphic 

to  (respectively, ); there are fundamental systems of solutions 

of (3), and each of them consists of  solutions. 

For linear homogeneous systems of differential equations that are not 

solved with respect to their leading derivatives, even if the coefficients of 

the system are constant, the number of solutions that appear in a 

fundamental system of solutions (that is, the dimension of the vector 

space of solutions) cannot always be calculated as easily as in the cases 

above. (In [1], Sect. 11 there is an examination of such a calculation for 

linear systems of differential equations with constant coefficients that are 

not solved with respect to their leading derivatives. 

9.6 LET’S SUM UP 

 We study Let  and  be two differentiable functions. We will 

say that  and  are proportional if and only if there exists a 

constant C such that  

 We learnt system of n vector-functions of dimension n, 

ϕi(t)={ϕ1i(t),…,ϕni(t)},                                   i=1,…,n 

 We learnt solution  of the variation of constant problem 

 

 We study The Liouville–Ostrogradski formula has the form 

 

 (2) 

 We study system of differential equations has the form 

 

 (3) 
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where  (or ) and if for all  the 

mappings 

 

9.7 KEYWORD 

Operator : a person who operates equipment or a machine 

Fundamental solution : a fundamental solution for a linear partial 

differential operator L is a formulation in the language of distribution 

theory of the older idea of a Green's function (although unlike Green's 

functions, fundamental solutions do not address boundary conditions). 

Ostrogradski formula : A relation that connects the Wronskian of a 

system of solutions and the coefficients of an ordinary linear 

differential equation 

 

9.8 QUESTIONS FOR REVIEW 

Q. 1 Define Variation of Constants. 

Q. 2 Define Linear Independence of Wronskian. 

Q. 3 Define Wronski Determinant.  

Q. 4 State Liouville-Ostrogradski Formula. 

Q. 5 Write Eliptic Equation. 
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9.10 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 3 

 Q. 2 Check in Section 3.2 

Check In progress-II 

Answer Q. 1 Check in Section 5 

 Q. 2 Check in Section 5.1 
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UNIT 10: MATRIX EXPONENTIAL 

SOLUTION  
 

STRUCTURE 

10.0 Objective  

10.1 Introduction 

10.2 MATRIX EXPONENTIAL 

10.3 MATRIX 

10.4  EXPONENTIAL FUNCTION 

10.5 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT 

COEFFICIENTS 

10.5.1 INTRODUCTION AND MOTIVATION 

 10.5.2 Phase Plane 

 10.5.3 Equilibrium Solutions 

10.6 QUALITATIVE ANALYSIS 

 10.6.1 Information from the Nullclines 

10.7 Let’s Sum Up 

10.8 Keyword 

10.9 Questions For Review 

10.10 Suggestion Reading And References 

10.11 Answer to Check in Progress 

10.0 OBJECTIVE 

 We study in this unit Matrix Exponential and its examples.  

 WE ALSO STUDY EXPONENTIAL FUNCTION WITH ITS 

PROPERTIES 

 WE STUDY HOMOGENEOUS LINEAR EQUATIONS WITH 

CONSTANT COEFFICIENTS 

 We study An equilibrium solution (or critical solution)  

 We also learn Qualitative Analysis and Nullclines 

 

10.1 INTRODUCTION 
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In mathematics, the matrix exponential is a matrix function on square 

matrices analogous to the ordinary exponential function. It is used to 

solve systems of linear differential equations. In the theory of Lie groups, 

the matrix exponential gives the connection between a matrix Lie 

algebra and the corresponding Lie group. 

Consider a square matrix A of size n×n, elements of which may be either 

real or complex numbers. Since the matrix A is square, the operation of 

raising to a power is defined, i.e. we can calculate the matrices. 

 

10.2 MATRIX EXPONENTIAL 

 

The matrix exponential plays an important role in solving system of 

linear differential equations. On this page, we will define such an object 

and show its most important properties. The natural way of defining the 

exponential of a matrix is to go back to the exponential function e
x
 and 

find a definition which is easy to extend to matrices. Indeed, we know 

that the Taylor polynomials 

                              

converges pointwise to e
x
 and uniformly whenever x is bounded. These 

algebraic polynomials may help us in defining the exponential of a 

matrix. Indeed, consider a square matrix A and define the sequence of 

matrices 

 

 

 

When n gets large, this sequence of matrices get closer and closer to a 

certain matrix. This is not easy to show; it relies on the conclusion 

on e
x
 above. We write this limit matrix as e

A
. This notation is natural due 

to the properties of this matrix. Thus we have the formula 
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One may also write this in series notation as 

                                                       

At this point, the reader may feel a little lost about the definition above. 

To make this stuff clearer, let us discuss an easy case: diagonal matrices. 

Example. Consider the diagonal matrix 

 

It is easy to check that 

                                                      

for . Hence we have 

 

Using the above properties of the exponential function, we deduce that 

 

 

Indeed, for a diagonal matrix A, e
A
 can always be obtained by replacing 

the entries of A (on the diagonal) by their exponentials. Now let B be a 

matrix similar to A. As explained before, then there exists an invertible 

matrix P such that 

                                                                     B = P
-1

AP. 

Moreover, we have 

                                                                 B
n
 = P

-1
A

n
P 

 for , which implies 
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This clearly implies that 

                               

In fact, we have a more general conclusion. Indeed, let A and B be two 

square matrices. Assume that . Then we have . 

Moreover, if B = P
-1

AP, then 

e
B
 = P

-1
e

A
P. 

Example. Consider the matrix 

 

This matrix is upper-triangular. Note that all the entries on the diagonal 

are 0. These types of matrices have a nice property. Let us discuss this 

for this example. First, note that 

 

 

In this case, we have 

                       

In general, let A be a square upper-triangular matrix of order n. Assume 

that all its entries on the diagonal are equal to 0. Then we have 

                                              

Such matrix is called a nilpotent matrix. In this case, we have 
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As we said before, the reasons for using the exponential notation for 

matrices reside in the following properties: 

Theorem. The following properties hold: 

1. ; 

2. if A and B commute, meaning AB = BA, then we have 

e
A+B

 = e
A
e

B
; 

3. for any matrix A, e
A
 is invertible and 

 

The power series that defines the exponential map  also defines a map 

between matrices. In particular, 

  

 

(1) 

  

 

(2) 

  

 

(3) 

converges for any square matrix , where  is the identity matrix. The 

matrix exponential is implemented in the Wolfram 

Language as MatrixExp[m]. 

The Kronecker sum satisfies the nice property 

 

(4) 

Matrix exponentials are important in the solution of systems of ordinary 

differential equations. 

In some cases, it is a simple matter to express the matrix exponential. For 

example, when  is a diagonal matrix, exponentiation can be performed 

simply by exponentiating each of the diagonal elements. For example, 

given a diagonal matrix 
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(5) 

The matrix exponential is given by 

 

(6) 

Since most matrices are diagonalizable, it is easiest to diagonalize the 

matrix before exponentiating it. 

When  is a nilpotent matrix, the exponential is given by a matrix 

polynomial because some power of  vanishes. For example, when 

 

(7) 

then 

 

(8) 

and . 

For the zero matrix , 

 

(9) 

i.e., the identity matrix. In general, 

 

(10) 

so the exponential of a matrix is always invertible, with inverse the 

exponential of the negative of the matrix. However, in general, the 

formula 

 

(11) 
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holds only when  and  commute, i.e., 

 

(12) 

For example, 

 

(13) 

while 

 

(14) 

Even for a general  real matrix, however, the matrix exponential can 

be quite complicated 

 

(15) 

where 

  

 

(16) 

  

 

(17) 

  

 

(18) 

  

 

(19) 

and 

 

(20) 

As , this becomes 

 

(21) 

10.3 MATRIX 

A matrix is a concise and useful way of uniquely representing and 

working with linear transformations. In particular, every linear 

transformation can be represented by a matrix, and every matrix 
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corresponds to a unique linear transformation. The matrix, and its close 

relative the determinant, are extremely important concepts in linear 

algebra, and were first formulated by Sylvester (1851) and Cayley. 

In his 1851 paper, Sylvester wrote, "For this purpose we must 

commence, not with a square, but with an oblong arrangement of terms 

consisting, suppose, of  lines and  columns. This will not in itself 

represent a determinant, but is, as it were, a Matrix out of which we may 

form various systems of determinants by fixing upon a number , and 

selecting at will  lines and  columns, the squares corresponding of th 

order." Because Sylvester was interested in the determinant formed from 

the rectangular array of number and not the array itself (Kline 1990, 

p. 804), Sylvester used the term "matrix" in its conventional usage to 

mean "the place from which something else originates" subsequently 

used the term matrix informally, stating "Form the rectangular matrix 

consisting of  rows and  columns.... Then all 

the  determinants that can be formed by rejecting any one column at 

pleasure out of this matrix are identically zero." However, it remained up 

to Sylvester's collaborator Cayley to use the terminology in its modern 

form in papers of 1855 and 1858. 

In his 1867 treatise on determinants, C. L. Dodgson (Lewis Carroll) 

objected to the use of the term "matrix," stating, "I am aware that the 

word 'Matrix' is already in use to express the very meaning for which I 

use the word 'Block'; but surely the former word means rather the mould, 

or form, into which algebraical quantities may be introduced, than an 

actual assemblage of such quantities...." However, Dodgson's objections 

have passed unheeded and the term "matrix" has stuck. 

The transformation given by the system of equations 

 

  

(1) 

 

  

(2) 

   

(3) 

 

  

(4) 

is represented as a matrix equation by 
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(5) 

where the  are called matrix elements. 

 

An  matrix consists of  rows and  columns, and the set 

of  matrices with real coefficients is sometimes denoted . To 

remember which index refers to which direction, identify the indices of 

the last (i.e., lower right) term, so the indices  of the last 

element  in the above matrix identify it as an  matrix. Note that 

while this convention matches the one used for expressing measurements 

of a painting on canvas (where height comes first then width), it is 

opposite that used to measure paper, room dimensions, and windows, (in 

which the width is listed first followed by the height; e.g., 8 1/2 inch by 

11 inch paper is 8 1/2 inches wide and 11 inches high). 

A matrix is said to be square if , and rectangular if . 

An  matrix is called a column vector, and a  matrix is called 

a row vector. Special types of square matrices include the identity 

matrix , with  (where  is the Kronecker delta) and 

the diagonal matrix  (where  are a set of constants). 

In this work, matrices are represented using square brackets as 

delimiters, but in the general literature, they are more commonly 

delimited using parentheses. This latter convention introduces the 

unfortunate notational ambiguity between matrices of the form  and 

the binomial coefficient 

 

(6) 
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When referenced symbolically in this work, matrices are denoted in a 

sans serif font, e.g, , , etc. In this concise notation, the transformation 

given in equation (5) can be written 

 

(7) 

where  and  are vectors and  is a matrix. A number of other 

notational conventions also exist, with some authors preferring an italic 

typeface. 

It is sometimes convenient to represent an entire matrix in terms of 

its matrix elements. Therefore, the th element of the matrix  could 

be written , and the matrix composed of entries  could be written 

as , or simply  for short. 

Two matrices may be added (matrix addition) or multiplied (matrix 

multiplication) together to yield a new matrix. Other common operations 

on a single matrix are matrix diagonalization, matrix inversion, 

and transposition. 

The determinant  or  of a matrix  is a very important quantity 

which appears in many diverse applications. The sum of the diagonal 

elements of a square matrix is known as the matrix trace  and is also 

an important quantity in many sorts of computations. 

Check In Progress-I 

Q. 1 Define Matrix Exponential.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . ………… . .  . .  . . . . . . . . . . .  . . . . . . . . .  

Q.2  Define Matrix System of Equation.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  
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10.4 EXPONENTIAL FUNCTION 

The function 

                                              

where  is the base of the natural logarithm, which is also known as the 

Napier number. This function is defined for any value of  (real or 

complex) by 

                                          
(1) 

and has the following properties: 

                                  

for any values of  and . 

For real , the graph of  (the exponential curve) passes through 

the point  and tends asymptotically to the -axis (see Fig.). 

 

Figure: 5.1 

In mathematical analysis one considers the exponential 

function  for real  and , ; this function is related to 

the (basic) exponential function  by 
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The exponential function  is defined for all  and is positive, 

monotone (it increases if  and decreases if ), continuous, 

and infinitely differentiable; moreover, 

                   

and in particular 

                      

and in a neighbourhood of each point the exponential function can be 

expanded in a power series, for example: 

                     

(2) 

The graph of  is symmetric about the ordinate axis to the graph 

of . If ,  increases more rapidly than any power 

of  as , while as  it tends to zero more rapidly 

than any power of , i.e. for any natural number , 

                   

The inverse of an exponential function is a logarithmic function. 

If  and  are complex, the exponential function is related to the (basic) 

exponential function  by 

                   

where  is the logarithm of the complex number . 

The exponential function  is a transcendental function and is the 

analytic continuation of  from the real axis into the complex 

plane. 

An exponential function can be defined not only by (1) but also by 

means of the series (2), which converges throughout the complex plane, 

or by Euler's formula 
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If , then 

                      

The function  is periodic with period : . The 

function  assumes all complex values except zero; the 

equation  has an infinite number of solutions for any complex 

number . These solutions are given by 

 

The function  is one of the basic elementary functions. It is used to 

express, for example, the trigonometric and hyperbolic functions. 

The basic exponential function  defined by (1) or, 

equivalently, (2) (with  instead of ) is single-valued. However, 

powers  for  complex  are multiple-valued 

since  denotes the "multiple-valued inverse" to . 

Thus, since it is customary to abbreviate  as , the left-hand 

side of the identity 

 

is multiple-valued, while the right-hand side is single-valued. This 

identity is a dangerous one and should be dealt with with care, otherwise 

it may lead to nonsense like 

 

By considering a single-valued branch of the logarithm (cf. Branch of an 

analytic function), or by considering the complete analytic 

function  on its associated Riemann surface, an awkward notation and 

a lot of confusion may disappear. For fixed , any value (i.e. 

determination) of  defines an exponential function: 

 

Problem. Let  and  be the matrices 
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Show that if  then  and  are row equivalent. 

Recall that two matrices are row equivalent iff one may be obtained from 

the other one via row elementary operations. 

Solution : Assume that . Let us show that  is row 

equivalent to . Assume moreover that . Then divide the first 

row by  to get the new matrix 

 

Now take the second row minus  times the first row to get 

                                 

 

Divide the second row by  since it not equal to 0 to get 

 

 

Finally take the first row minus  times the first row to get 

 

 

Our proof is almost complete, if we show that the conclusion still holds 

when . In this case, neither  nor  are equal to 0. Switch the 
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first row with the second one to get 

                                                      

Divide the first row by  and the second row by  to get 

                                                        

Take the first row minus  times the second row to get 

                                                        

The proof is now complete. 

10.5 HOMOGENEOUS LINEAR 

EQUATIONS WITH CONSTANT 

COEFFICIENTS 

Consider the nth-order linear equation with constant coefficients 

 

with  . In order to generate n linearly independent solutions, we 

need to perform the following: 

(1)Write the characteristic equation 

 

Then, look for the roots. These roots will be of two natures: 

simple or multiple. Let us show how they generate independent 

solutions of the equation(H). 

(2)First case: Simple root 

Let r be a simple root of the characteristic equation. 
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(2.1) 

If r is a real number, then it generates the solution  ; 

(2.2) 

If  is a complex root, then since the coefficients of 

the characteristic equation are real,  is also a root. The 

two roots generate the two 

solutions  and ; 

(3)Second case: Multiple root 

Let r be a root of the characteristic equation with multiplicity m. If r is a 

real number, then generate the m independent solutions 

 

If  is a complex number, then  is also a root 

with multiplicity m. The two complex roots will generate 

2m independent solutions 

 

Using properties of roots of polynomial equations, we will 

generate n independent solutions  . Hence, the general 

solution of the equation (H) is given by 

 

Therefore, the real problem in solving (H) has to do more with finding 

roots of polynomial equations. We urge students to practice on this. 

Example: Find the general solution of 

 

Solution: Let us follow these steps: 

(1) Characteristic equation 
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Its roots are the complex numbers 

 

In the analytical form, these roots are 

; 

(2) Independent set of solutions 

(2.1)The complex roots  and  generate the two 

solutions 

; 

(2.2The complex roots  and  generate the two 

solutions 

; 

(3)The general solution is 

 

As you may have noticed in this example, complex numbers do get 

involved very much in this kind of problem... 

10.5.1 Introduction and Motivation 

The differential equations are very much helpful in many areas of 

science. But most of interesting real life problems involve more than one 

unknown function. Therefore, the use of system of differential equations 
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is very useful. Without loss of generality, we will concentrate on systems 

of two differential equations 

 

As a motivation let us consider an island with two type of species: 

Rabbits and Fox. Clearly one plays the role of predator while the other 

one the role of a prey. If we are interested to model the populations 

growths of both species, then we have to keep in mind that if, for 

example, the population of the Fox increases, then the Rabbit population 

will be affected. So the rate of change of the population of one type will 

depend on the actual population of the other type. For example, in the 

absence of the Rabbit population, the Fox population will decrease (and 

fast) to face a certain extinction. Something that most of us would like to 

avoid. A model for this Predator-Prey problem was developed by Lotka 

(in 1925) and Volterra (in 1926) and is known as the Lotka-Volterra 

system 

 

where R(t) measures the Rabbit population, F(t) measures the Fox 

population, and all the involved constant  are positive 

numbers. Note that a and b are the growth rate of the prey, and the death 

rate of the predator.  and  are measures of the effect of the interaction 

between the Rabbits and The Fox. 

Note that in the Lotka-Volterra system, the variable t is missing. This 

kind of system is called autonomous system and are written 
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10.5.2 Phase Plane 

Let us go back to the general case 

 

A solution to this system is the couple of functions (x(t),y(t)) which 

satisfy both differential equations of the system. When we change the 

variable t, then we get a set of points on the xy-plane which, in physics, 

we usually call a trajectory. The moving object has the coordinates 

(x(t),y(t)) at time t. The velocity to the trajectory at time t is given by 

 

Note that we do not need to know the solution (x(t),y(t) to determine the 

velocity vector at time t. Indeed, we have 

 

as long as we know x, y, and t. In particular, we can draw all the velocity 

vectors everywhere on the plane for the autonomous systems. This is 

known as the vector field. 

The vector field should be understood as the analogue of the direction 

field for differential equations. 

Example. Draw the vector field for the predator-prey problem 
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For example, for the point (x,y)= (2,1), we have 

 

If we put more velocity vectors, we get 

 

It is clear that the length of the velocity vectors may affect our 

understanding of the solutions. If we are only interested by the direction 

of the motion not its speed, then it is natural to fix a length for these 

vectors 

 

Compare the two pictures. 

Remark. Note that for the predator-prey problem, we may be interested 

to find out whether one of the two species is facing extinction or not. In 

other words, we may be interested to study the functions x(t) and y(t) 

separately. In other words, two more graphs are naturally associated to a 

system. For the above example, the graph of the solution which satisfies 

the condition 
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is drawn below 

 

and the graphs of x(t) and y(t) are 

 

and 

 

 

10.5.3 Equilibrium Solutions 

 

An equilibrium solution (or critical solution) of an autonomous system 

is the trajectory of a moving-object with no motion, that is the object is 

not moving. In this case, the velocity vector is basically equal to 0. 

Consider the autonomous system 
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The equilibrium solutions are the algebraic solutions of the system 

 

The equilibrium solutions are also called equilibrium points since the 

associated trajectories are exactly points on the phase plane. 

Example. Find the equilibrium points of the Duffin system 

 

Answer. We consider the system 

 

Plugging y=0 in the second equation, we get 

 

which gives x = 0, or  . Hence the equilibrium points are 

 

Example: Consider the first order system 

. 

Is 
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a solution of the system? Explain ! 

Answer: Clearly, we need to compute x' and y'. We have 

. 

Plug x' and y' into the system and check that they indeed satisfy both 

equations. Therefore, (x(t),y(t) is a solution. 

Example: Write the second order differential equation 

 

as a system of two first order differential equations. 

Answer: set y'=v. Then we have 

. 

This yields 

 

Example: Find the solution to the system 

 

Answer: First, solve the second equation since it does not contain the 

variable x. We recognize a separable equation. Hence, we will first look 

for the constant solutions. 
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. 

This clearly gives y=2. The non-constant solutions can be obtained by 

separating the variables 

, 

and then performing integration. Since 

, 

we get 

 

If we put all the solutions together we get 

. 

Clearly, the only solution satisfying the initial condition y(0)=2 is the 

constant solution y=2. Next, we plug the value of y(t) into the first 

equation of the system to get 

 

This again is a separable equation. This time we do not have constant 

solutions since the quadratic equation  does not have 

real roots. Let us find the non-constant solutions. First, we separate the 

variables x and t to get 
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Since we have (using the techniques of integration of rational functions) 

, 

then we get 

 

The initial condition x(0)=0 gives 

 

Finally, the solution to the system is 

. 

You may want to find x explicitly as a function of t. 

Remark: Since the constant solution y=2 is the solution of the second 

equation and the initial condition to be satisfied by y is y(0)=2, we may 

conclude directly from existence and uniqueness, that y=2 is the desired 

solution without looking for the non-constant solutions. 

Example: Consider the following predator-prey model: 

. 

1.Does x(t) denote the predator population or the prey population? Justify 

your answer. 

2.Find all equilibrium points of the system. 
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3.Suppose the prey population becomes extinct while the predator 

population is still positive. Describe the long-term behavior of the 

predator population. 

4.Suppose the predator population becomes extinct while the prey 

population is still positive. Describe the long-term behavior of the prey 

population. 

5.Describe the long-term behavior of the system when the initial 

populations are given by 

. 

Answer: 

1.Recall that in the absence of prey, the population of predators decrease. 

It is clear that if y=0, then we have x'(t) = -x, meaning that x(t) will 

decrease. While, if we set x=0, we have y'=2y(1-y/2). Here we recognize 

the logistic equation which implies that y should get closer and closer to 

the carrying capacity y=2. Conclusion x represents the predator 

population. 

2The equilibrium points are solutions of the system 

. 

Since, 

, 

we have the following two cases: 

 Case 1: x=0, then the second equation gives 

. 
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Hence, we have two equilibrium points 

. 

 Case 2: y=10/9, then the second equation gives 

, 

which gives 

. 

Hence, one equilibrium point (in this case) 

. 

Finally, the system has three equilibrium points 

 

3.It will become extinct. 

4.It will approach the carrying capacity y=2. 

 

5.Using the answer to 2, we see that the initial populations correspond to 

an equilibrium point. Therefore, both populations will remain unchanged 

. 



Notes 

87 

Example: Find the solution to the system 

 

under the initial condition  . 

Answer: Notice that the second equation of the system is a differential 

equation involving only the variable y. Its integration gives 

 

Note that  is the derivative of  not its anti-derivative! 

The initial condition  translates into the initial 

condition y(0)=0 for the variable y. Hence, we have 

, 

which gives  . Since we have y, we plug it into the first 

equation to get 

 

We recognize a first order linear differential equation. In order to solve 

it, first we need to find the integrating factor given by 

 

Note that the anti-derivative 

of  is  . The general solution is 

then given by 
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We have 

, 

and 

, 

where, in the first integral, we used direct tables and for the second one 

we used integration by parts (we integrated  and differentiated t). 

Putting everything together, we get 

. 

The initial condition  translates into the initial 

condition x(0)=1 for the variable x. Hence, we have 

 

which gives C=0. Therefore, we have 

. 

Finally, the solution to the system is 
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Note that since  , we may generate another 

expression for the function x(t). 

Example: Consider the first order system 

 

with the initial conditions 

 

Use Euler's Method with step size h=0.1 to compute approximations 

for x(t) and y(t) at time t=0.1 and t=0.2. 

Answer: We have 

 

Using Euler's Method we know that 

 

and 

. 

Check In Progress-II 

Q. 1 Find the equilibrium points of the Duffin system 
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Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . .  

Q.2  Find the solution to the system 

 

under the initial condition  . 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . .  

10.6 QUALITATIVE ANALYSIS 

Eery often it is almost impossible to find explicitly of implicitly the 

solutions of a system (specially nonlinear ones). The qualitative approach 

as well as numerical one are important since they allow us to make 

conclusions regardless whether we know or not the solutions. 

Recall what we did for autonomous equations. First we looked for the 

equilibrium points and then, in conjunction with the existence and 

uniqueness theorem, we concluded that non-equilibrium solutions are 

either increasing or decreasing. This is the result of looking at the sign of 

the derivative. So what happened for autonomous systems? First recall 
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that the components of the velocity vectors are  and  . These 

vectors give the direction of the motion along the trajectories. We have 

the four natural directions (left-down, left-up, right-down, and right-up) 

and the other four directions (left, right, up, and down). These directions 

are obtained by looking at the signs of  and  and whether they are 

equal to 0. If both are zero, then we have an equilibrium point. 

Example. Consider the model describing two species competing for the 

same prey 

 

Let us only focus on the first quadrant  and  . First, we 

look for the equilibrium points. We must have 

 

Algebraic manipulations imply 

 

and 

 

The equilibrium points are (0,0), (0,2), (1,0), and  . 

Consider the region R delimited by the x-axis, the y-axis, the line 1-x-

y=0, and the line 2-3x-y=0. 
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Clearly inside this region neither  or  are equal to 0. Therefore, 

they must have constant sign (they are both negative). Hence the 

direction of the motion is the same (that is left-down) as long as the 

trajectory lives inside this region. 

 

 

In fact, looking at the first-quadrant, we have three more regions to add 

to the above one. The direction of the motion depends on what region we 

are in (see the picture below) 

 

The boundaries of these regions are very important in determining the 

direction of the motion along the trajectories. In fact, it helps to visualize 

the trajectories as slope-field did for autonomous equations. These 

boundaries are called nullclines. 
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Nullclines 

Consider the autonomous system 

 

The x-nullcline is the set of points where  and y-nullcline is the 

set of points where  . Clearly the points of intersection between 

x-nullcline and y-nullcline are exactly the equilibrium points. Note that 

along the x-nullcline the velocity vectors are vertical while along the y-

nullcline the velocity vectors are horizontal. Note that as long as we are 

traveling along a nullcline without crossing an equilibrium point, then 

the direction of the velocity vector must be the same. Once we cross an 

equilibrium point, then we may have a change in the direction (from up 

to down, or right to left, and vice-versa). 

Example. Draw the nullclines for the autonomous system and the 

velocity vectors along them. 

 

The x-nullcline are given by 

 

which is equivalent to 
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while the y-nullcline are given by 

 

which is equivalent to 

 

In order to find the direction of the velocity vectors along the nullclines, 

we pick a point on the nullcline and find the direction of the velocity 

vector at that point. The velocity vector along the segment of the 

nullcline delimited by equilibrium points which contains the given point 

will have the same direction. For example, consider the point (2,0). The 

velocity vector at this point is (-1,0). Therefore the velocity vector at any 

point (x,0), with x > 1, is horizontal (we are on the y-nullcline) and points 

to the left. The picture below gives the nullclines and the velocity vectors 

along them. 

 

In this example, the nullclines are lines. In general we may have any kind 

of curves. 

Example. Draw the nullclines for the autonomous system 

 

The x-nullcline are given by 
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which is equivalent to 

 

while the y-nullcline are given by 

 

which is equivalent to 

 

Hence the y-nullcline is the union of a line with the ellipse 

 

 

10.6.1 Information from the Nullclines 

For most of the nonlinear autonomous systems, it is impossible to find 

explicitly the solutions. We may use numerical techniques to have an 

idea about the solutions, but qualitative analysis may be able to answer 

some questions with a low cost and faster than the numerical technique 

will do. For example, questions related to the long term behavior of 

solutions. The nullclines plays a central role in the qualitative approach. 

Let us illustrate this on the following example. 

Example. Discuss the behavior of the solutions of the autonomous 

system 
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We have already found the nullclines and the direction of the velocity 

vectors along these nullclines. 

 

These nullclines give the birth to four regions in which the direction of 

the motion is constant. Let us discuss the region bordered by the x-axis, 

the y-axis, the line 1-x-y=0, and the line 2-3x-y=0. Then the direction of 

the motion is left-down. So a moving object starting at a position in this 

region, will follow a path going left-down. We have three choices 

 First choice: the trajectory dies at the equilibrium point  . 

 Second choice: the starting point is above the trajectory which dies at 

the equilibrium point  . Then the trajectory will hit the triangle 

defined by the points  , (0,1), and (0,2). Then it will go up-left 

and dies at the equilibrium point (0,2). 

Third choice: the starting point is below the trajectory which dies at 

the equilibrium point  . Then the trajectory will hit the triangle 
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defined by the points  , (1,0), and  . Then it will go 

down-right and dies at the equilibrium point (1,0). 

 

For the other regions, look at the picture below. We included some 

solutions for every region. 

 

Remarks. We see from this example that the trajectories which dye at 

the equilibrium point  are crucial to predicting the behavior of 

the solutions. These two trajectories are called separatrix because they 

separate the regions into different subregions with a specific behavior. To 

find them is a very difficult problem. Notice also that the equilibrium 

points (0,2) and (1,0) behave like sinks. The classification of equilibrium 

points will be discussed using the approximation by linear systems 

10.7 LET’S SUM UP 

We learnt in this unit  that the Taylor polynomials 
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We also learnt The function 

                                              

where  is the base of the natural logarithm, which is also known as the 

Napier number. 

We study nth-order linear equation with constant coefficients 

 

with  . In order to generate n linearly independent solutions. 

In this section, we encountered the following important ideas: 

 A slope field is a plot created by graphing the tangent lines of 

many different solutions to a differential equation. 

 Once we have a slope field, we may sketch the graph of solutions 

by drawing a curve that is always tangent to the lines in the slope 

field. 

 Autonomous differential equations sometimes have constant 

solutions that we call equilibrium solutions. These may be 

classified as stable or unstable, depending on the behavior of 

nearby solutions. 

10.8 KEYWORD 

Nullclines : The nullclines (null meaning zero, cline meaning slope) of 

the system x′=f(x,y),y′=g(x,y) occur when f(x,y)=0 or g(x,y)=0 

Constant coefficients : the general second‐order homogeneous linear 

differential equation has the form. If a( x), b( x), and c( x) are 

actually constants, a( x) ≡ a ≠ 0, b( x) ≡ b, c( x) ≡ c, then the equation 

becomes simply. This is the general second‐order homogeneous linear 

equation with constant coefficients 

Exponential : of or expressed by a mathematical exponent 
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10.9 QUESTIONS FOR REVIEW 

 

Q.  1 Find the general solution of the system, using the matrix 

exponential: 

dx/dt=2x+3y,                 dy/dt=3x+2y. 

 

Q  2. Solve the system of equations by the method of matrix exponential: 

Dx/dt=4x,             dy/dt=x+4y. 

 

Q  3 Solve the system of equations using the matrix exponential: 

Dx/dt=x+y,                   dy/dt=−x+y. 

Q. 4 Find the equilibrium points of the Duffin system 

 

Q. 5 Consider the following predator-prey model: 

. 

1.Does x(t) denote the predator population or the prey population? Justify 

your answer. 

2.Find all equilibrium points of the system. 

3.Suppose the prey population becomes extinct while the predator 

population is still positive. Describe the long-term behavior of the 

predator population. 

4.Suppose the predator population becomes extinct while the prey 

population is still positive. Describe the long-term behavior of the prey 

population. 
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5.Describe the long-term behavior of the system when the initial 

populations are given by 

 

10.10 SUGGESTION READING AND 

REFERENCES 

 K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth 

(1981) 

 J.A. Dieudonné, "Foundations of modern analysis" , 1 , Acad. Press 

(1969) pp. 192 (Translated from French) 

 A.I. Markushevich, "Theory of functions of a complex variable" , 1 , 

Chelsea (1977) (Translated from Russian) 

10.11 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 3 

 Q. 2 Check in Section 4 

Check In progress-II 

Answer Q. 1 Check in Section 6.3 

 Q. 2 Check in Section 6.
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UNIT 11  : BOUNDARY VALUE 

PROBLEM FOR SECOND ORDER 

EQUATION 
 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.2 Explanation 

11.3 Boundary Value Problem 

11.4 Boundary Conditions 

11.5 Initial Value Problem 

11.5.1 Solving BVPs 

11.6 Topics in Nonlinear BVPs 

11.6.1 Differential Inequalities in Boundary Value Problems 

11.7 Let’s Sum Up 

11.8 Keyword 

11.9 Questions For Review 

11.10 Suggestion Reading And References 

11.11 Answer to Check in Progress 

11.0 OBJECTIVES 

 We study in this unit Boundary Value Problem for Second Order 

Differential Equation with solution 

 We also study initial Value Problem with its examples. 

 We learn three types of boundary conditions  

1 Dirichlet boundary conditions specify the value of the 

function on a surface . 

2 Neumann boundary conditions specify the normal derivative 

of the function on a surface, 
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3 Robin boundary conditions. For an elliptic partial differential 

equation in a region , Robin boundary conditions specify 

the sum of  and the normal derivative of  at all points 

of the boundary of , with  and  being prescribed. 

 We also learn non-linear boundary value problems  

11.1 INTRODUCTION 

In mathematics, in the field of differential equations, a boundary value 

problem is a differential equation together with a set of additional 

constraints, called the boundary conditions. A solution to a boundary 

value problem is a solution to the differential equation which also 

satisfies the boundary conditions. 

Boundary value problems arise in several branches of physics as any 

physical differential equation will have them. Problems involving 

the wave equation, such as the determination of normal modes, are often 

stated as boundary value problems. A large class of important boundary 

value problems are the Sturm–Liouville problems. The analysis of these 

problems involves the eigen functions of a differential operator. 

To be useful in applications, a boundary value problem should be well 

posed. This means that given the input to the problem there exists a 

unique solution, which depends continuously on the input. Much 

theoretical work in the field of partial differential equations is devoted to 

proving that boundary value problems arising from scientific and 

engineering applications are in fact well-posed. 

Among the earliest boundary value problems to be studied is 

the Dirichlet problem, of finding the harmonic functions (solutions 

to Laplace's equation); the solution was given by the Dirichlet's principle. 

A boundary value problem (BVP) for an ordinary differential equation 

(ODE) will consist of an ODE together with conditions specified at more 

than one point. In particular, we will be con cer n ed with solving scalar 

differential equations,  

 y(n)= f(x, y, y′, . . . , y(n−1)), n ≥ 2, 



Notes 

103 

where f is real- valued and boundary conditions (BC’s) on solutions of 

the equation are 

specified at k, (with k ≥ 2), points belonging to some interval of the reals 

.Let us first consider some difficulties which might occur. A two-point 

boundary value problem (BVP) of total order n on a finite 

interval [a,b] may be written as an explicit first order system of ordinary 

differential equations (ODEs) with boundary values evaluated at two 

points as   

y′(x) = f(x,y(x)),        x ∈ ( a,b ),      g (y (a)),      y(b)) = 0                                                

(1) 

Here, y,f,g∈Rn and the system is called explicit because the 

derivative y′ appears explicitly. The n boundary conditions defined 

by g must be independent; that is, they cannot be expressed in terms of 

each other (if g is linear the boundary conditions must be linearly 

independent). 

In practice, most BVPs do not arise directly in the form (1) but instead as 

a combination of equations defining various orders of derivatives of the 

variables which sum to n . In an explicit BVP system, the boundary 

conditions and the right hand sides of the ordinary differential equations 

(ODEs) can involve the derivatives of each solution variable up to an 

order one less than the highest derivative of that variable appearing on 

the left hand side of the ODE defining the variable. To write a general 

system of ODEs of different orders in the form (1), we can define y as a 

vector made up of all the solution variables and their derivatives up to 

one less than the highest derivative of each variable, then add trivial 

ODEs to define these derivatives. See the section on initial value 

problems for an example of how this is achieved. See also Ascher et 

al.(1995) who show techniques for rewriting boundary value problems of 

various orders as first order systems. Such rewritten systems may not be 

unique and do not necessarily provide the most efficient approach for 

computational solution. 

The words two-point refer to the fact that the boundary condition 

function g is evaluated at the solution at the two interval 

endpoints a and b unlike for initial value problems (IVPs) where 

the n initial conditions are all evaluated at a single point. Occasionally, 
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problems arise where the function g is also evaluated at the solution at 

other points in (a,b) . In these cases, we have a multipoint BVP. As 

shown in Ascher et al. (1995), a multipoint problem may be converted to 

a two-point problem by defining separate sets of variables for each 

subinterval between the points and adding boundary conditions which 

ensure continuity of the variables across the whole interval. Like 

rewriting the original BVP in the compact form (1), rewriting a 

multipoint problem as a two-point problem may not lead to a problem 

with the most efficient computational solution. 

Most practically arising two-point BVPs have separated boundary 

conditions where the function g may be split into two parts (one for each 

endpoint): 

Ga (y(a))=0,    gb(y(b) ) = 0. 

Here, ga∈Rs and gb∈Rn−s for some value s with 1<s<n and where each 

of the vector functions ga and gb are independent. However, there are 

well-known, commonly arising, boundary conditions which are not 

separated; for example, consider periodic boundary conditions which, for 

a problem written in the form of equation (1), are 

y(a) − y(b) = 0. 

11.2 EXPLANATION 

Boundary value problems are similar to initial value problems. A 

boundary value problem has conditions specified at the extremes 

("boundaries") of the independent variable in the equation whereas an 

initial value problem has all of the conditions specified at the same value 

of the independent variable (and that value is at the lower boundary of 

the domain, thus the term "initial" value). A boundary value is a data 

value that corresponds to a minimum or maximum input, internal, or 

output value specified for a system or component.  

For example, if the independent variable is time over the domain [0,1], a 

boundary value problem would specify values for y(t) at both t = 0 and t 

= 1, whereas an initial value problem would specify a value 

of y(t) and y’(t) at time t = 0. 
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Finding the temperature at all points of an iron bar with one end kept 

at absolute zero and the other end at the freezing point of water would be 

a boundary value problem. 

If the problem is dependent on both space and time, one could specify 

the value of the problem at a given point for all time or at a given time 

for all space. 

Example 1.1. Linear equations (Initial Value Problems (IVP’s) have 

11.3 BOUNDARY VALUE PROBLEM 

A boundary value problem is a problem, typically an ordinary 

differential equation or a partial differential equation, which has values 

assigned on the physical boundary of the domain in which the problem is 

specified. For example, 

 

(1) 

where  denotes the boundary of , is a boundary problem. 

The problem of finding a solution to an equation 

 

(1) 

lying in a given subset  of the space  of functions depending 

on  that are absolutely continuous on  and that assume values in : 

 

(2) 

It is assumed that  is a function defined on  with values 

in  and satisfying the Carathéodory conditions;  is an interval on the 

real line . 

1) The boundary value problem (1), (2) is said to be linear if 

 



Notes 

106 

where the functions  and  are summable on every compact 

interval in  and the set  is a linear manifold in . In 

particular, one might have 

 

 

where  is a function of bounded variation. A linear boundary value 

problem gives rise to a linear operator 

 

the eigen values of which are precisely those values of the 

parameter  for which the homogeneous boundary value problem 

 

has non-trivial solutions. These non-trivial solutions are the eigen 

functions of the operator . If the inverse operator  exists and has 

an integral representation 

 

then  is called a Green function. 

2) Let , let  be almost-periodic in  uniformly 

in  on every compact subset of  and let  be the set of almost-

periodic functions in  that are absolutely continuous on . Then 

problem (1), (2) is known as the problem of almost-periodic solutions. 

3) In control theory one considers boundary value problems with a 

functional parameter: a control. For example, consider the equation 

 

(3) 

with set of admissible controls  and two sets . Let  be 

the set of absolutely continuous functions in  such that 

, . The boundary value problem is to find a 

pair  such that  and the solution  of 

equation (3) at  satisfies the condition . 
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4) There is a wide range of diverse necessary and sufficient conditions 

for the existence and uniqueness of solutions to various boundary value 

problems, and of methods for constructing an approximate solution 

(see [4]–[7]). For example, consider the problem 

 

(4) 

in which 

 

for certain constants . Suppose that the 

homogeneous problem 

 

(5) 

is regular, i.e. its only solution is the trivial one. Then problem (4) has at 

least one solution, provided either , or  and  is sufficiently 

small. It is fairly complicated to determine whether problem (5) is 

regular. However, the linear (scalar) boundary value problem 

 

for example, is regular if whenever  there exists 

a  such that 

 

where 
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11.4 BOUNDARY CONDITIONS 

There are three types of boundary conditions commonly encountered in 

the solution of partial differential equations: 

1. Dirichlet boundary conditions specify the value of the function on a 

surface . 

2. Neumann boundary conditions specify the normal derivative of the 

function on a surface, 

 

3. Robin boundary conditions. For an elliptic partial differential equation 

in a region , Robin boundary conditions specify the sum of  and the 

normal derivative of  at all points of the boundary of , 

with  and  being prescribed. 

Check In Progress-I 

Q. 1 State Boundary Value Problem.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 
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. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Write Two Boundary Conditions.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

11.5 INITIAL VALUE PROBLEM 

An initial value problem is a problem that has its conditions specified at 

some time . Usually, the problem is an ordinary differential 

equation or a partial differential equation. For example, 

 

(1) 

where  denotes the boundary of , is an initial value problem. 

11.5.1 Solving BVPs 
We are next interested in applying these theorems in the BVP 

 

 

where  is continuous. This includes, for example, 

the forced pendulum equation in the form 
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where  is -periodic and odd. In this case, we take 

 

where we have done the change of variable 

 

Write 

    (linear differential operator)  

Then, . We introduce the Nemitski 

Operator,  given by 

 

Let  be the inclusion operator from  to . To solve the boundary 

value problem, we need to invert  and apply it to . 

First, we need to restrict  to the subspace 

 

then we will have the solution to the BVP written as a solution to the 

operator equation, 

 

Define . 

 

Recall the Green's function for the problem 

 

given by 

 

Recall, 
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Lemma 6.1   For ,  is given by 

 

and satisfies 

 

Proof. Verify this directly (we've seen it before).  

We also have, 

Lemma 6.2   For , 

 

Proof. Recall for , the norm 

 

 

Notice that 

 

and it is easy to see that 

 

So letting , 

 

Now, 
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Finally, through similar estimates, we get , so 

 

 

Hence, as  has this uniform bound, we get that it is continuous 

(from a simple proof in functional analysis).  

Lemma 6.3   If  is continuous, then the Nemitski 

operator  is continuous in , where 

 

Proof. Let , and let  be given. We need to show there 

exists  such that if  and , 

then . Chose  such that . Now, on 

the compact set 

 

 is bounded and uniformly continuous. So, there exists a  such 

that if , then 

 

Let . If  and , then 

 

Hence, 
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    and  

So,  and . 

Hence,  for 

all  and . Thus,  is 

continuous. 

 

We now have: 

Theorem 6.1   The operator 

 

given by, 

 

is completely continuous. 

Proof. Immediate.  given by  is 

completely continuous. Then  is also, as it is the composition of a 

continuous and completely continuous map.  

We now easily prove: 

Theorem 6.2   If  is bounded, then the BVP 

 

 

has a solution. 

Proof. Let 

 

 

where 
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Then we note that  is closed, bounded, and convex. We 

claim . Let ; then we want to show that . 

We note that 

 

i.e., 

 

Let . Then, 

 

Thus, 

 

and  is a completely continuous operator in  into , and so has a 

fixed point  with . Then, 

 

 

and the BVP has a solution.  

We get this as an immediate Corollary: 

Theorem 6.3   Suppose  is an odd -periodic function . 

Then the BVP 

 

 

has a solution. By extending  to an odd function and extending, we can 

find a periodic solution of the BVP for all of . 

11.6 TOPICS IN NONLINEAR BVPS 

Consider 
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(11) 

 

 

 

(12) 

 

 

 

    - any norm  

Recall that the only solution 

to  satisfying  is , so for 

each , the unique solution of 

 

is given by 

 

where  is given by 

 

Therefore the solution to 

 

is given by 

 

where 

 

And the solution of the original BVP (11), (12) is given by 

 

(13) 
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Consequently,  solves (13) if and only if  solves (11), (12). 

 

Recall some properties of the Green's function. For fixed , 

 

 

Therefore, 

 

and 

 

and so, 

 

Also, we have 

 

and the max occurs at either  or , so 

 

 

Theorem 7.1   Assume  such that for 

all , we have 

 

Then, if  satisfies 
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the BVP (11), (12) has a unique solution. 

Proof. 

 

and for , we define 

 

Then, define the operator  by 

 

then we can verify for , 

 

 

Since 

 

we get: 

 

 

 

Therefore, 
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Hence, we can apply the Contraction Mapping Principle to conclude that 

there exists a fixed point of ; hence, the BVP (11), (12) has a 

solution.  

Remark: In the scalar case, we can try to show that this result is sharp as 

follows: 

Suppose that  and satisfies 

 

let  be the solution of 

 

 

Then, we can show that there exists  such 

that  and  on . 

But we can also show that the BVP (11), (12) has a unique solution if 

 

This is best possible. 

Next, we will be interested in solving the BVP (11), (12) 

for  small, but without uniqueness. 

Theorem 7.2   Le  be given and 

assume  and let 

 

Define 

 

then the BVP (11),(12) has a solution for any , 

, , 
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and . Moreover, given , there exists a 

solution  such that 

 

and 

 

on , provided  is small enough. 

Proof. We apply the Schauder fixed-point theorem. Let 

 

and define the norm 

 

Let 

 

(here, ).  is closed, convex, and we 

define  by 

 

For , 

 

 

 

Also, 
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so if , then . 

Also, 

 

So,  is completely continuous, and hence has a fixed point 

by Schauder. Finally, 

 

 

 

Theorem 7.3   Assume  and is bounded 

on . Then, every BVP (11), (12) has a solution. 

Proof. Let 

 

and . Given , choose  such that 

,  and 

 

and 

 

 

 

Check In Progress-II 

Q. 1 The operator 

 

given by, 
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is completely continuous. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Assume  and is bounded 

on . Then, every BVP (11), (12) has a solution. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

11.6.1 Differential Inequalities in Boundary Value 

Problems 

Definition 7.2.1   A function  is a lower 

solution of the DE 

 

in case that  for . Further,  is an upper 

solution if 

 

Here, we are assuming that . 

Lemma 7.2.1   Assume  and is non-decreasing 

in  for each fixed  in . If  are lower and upper 

solutions, respectively, with 
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and if one of the differential inequalities is strict, then 

 

Proof. Suppose that  for some . Then with 

 

 has a nonnegative max at some . Of 

course, , , and . Then, 

 

 

 

Therefore, 

 

Since one of the inequalities is strict, we get a contradiction. 

Recall that we are considering 

 

(14) 

 

 

We are going to modify the RHS  so it is bounded in all of . 

Suppose that  and that  on . 

Let  be such that 

    on  

We define 

 

and we define 
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We call  the modification of  with respect 

to . From the definition of , we have 

    on  

where  and 

 

We have the fact that 

 

We consider the BVP 

 

(15) 

 

 

 

(16) 

 

We have then 

Theorem 7.2.2   Let  be lower and upper 

solutions of (14) with  on . Then the modified BVP 

(15), (16) has a solution for any ,  and 

such that . 

Proof. There is a solution to (15), (16) because  is bounded. We need 

only toshow that the solution stays between  and . If the 

solution  for some , then  has a max 

at , , and . This eventually leads to a 
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contradiction. 

 

Definition 7.2.2   Let  and 

assume  with  on . We say 

that  satisfies a Nagumo condition with respect to  on  if there 

exists an  such that 

 

and such that 

 

for all , , and for all .  must also satisfy 

 

(17) 

 

 

and where 

 

Note that if , then (17) holds. 

Theorem 7.2.3  Suppose  satisfies a Nagumo 

condition with respect to the pair . Then for any 

solution  of  with  on 

, there exists an  depending only on  such 

that  on . 

Proof. We leave this unproven, but it is shown in Kelley and Peterson. 

Choose  such that 
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Let  such that 

 

and . Claim that  for all . If not, then 

there exists an interval  such that one of the following holds: 

1.  on  

2.  on  

3.  on  

4.  on  

Consider 1. Then, we have 

 

So, 

 

 

On the other hand, 

 

 

 

Hence, 

 

on .  
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Theorem 7.2.4   If , then the conclusion of 

Theorem 7.2.3 holds. 

Remark: This does not hold for systems. To see this, 

let ,  Then, 

 

 

then, the hypotheses of the last theorem hold with . 

 

11.7 LET’S SUM UP 

We study in this unit A boundary value problem is a problem, typically 

an ordinary differential equation or a partial differential equation, which 

has values assigned on the physical boundary of the domain in which the 

problem is specified. For example, 

 

 

where  denotes the boundary of , is a boundary problem. 

We also study following:  

1. Fixed Point Theorem of cone expansion and cone compression. 

Definition. How these are applied (  at end points). 

2. Review some homework examples. 

3. Application of  and  with respect to solving the periodic 

BVP. (Forced pendulum equation). Formulation of BVP. 

4. Fredholm operator of index zero. 
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5. Nagumo condition. 

11.8 KEYWORD 

Boundary Value : a value specified by a boundary condition 

Fredholm Operator : a Fredholm operator is an operator that arises in 

the Fredholm theory of integral equations. ... A Fredholm operator is a 

bounded linear operator T : X → Y between two Banach spaces with 

finite-dimensional kernel and (algebraic) cokernel , and with closed 

range. 

Sturm–Liouville problems : In mathematics and its applications, a 

classical Sturm–Liouville theory, named after Jacques .... The 

eigenvalues λ1, λ2, λ3, ... of the regular Sturm–Liouville problem (1)–

(2)–(3) are real and can be ordered such that ..... In this space L 

is defined on sufficiently smooth functions which satisfy the above 

boundary conditions 

11.9 QUESTIONS FOR REVIEW  

Q. 1 Let  be lower and upper solutions of 

(14) with  on . Then the modified BVP (15), (16) has a 

solution for any ,  and such 

that . 

Q. 2 For ,  is given by 

 

and satisfies 

 

Q. 3 If  is continuous, then the Nemitski 

operator  is continuous in , where 
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Q. 4 Assume  and is non-decreasing in  for each 

fixed  in . If  are lower and upper solutions, 

respectively, with 

 

and if one of the differential inequalities is strict, then 

 

Q. 5 Define Boundary Value Problem for Second Order Differential 

Equation.  
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11.11 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 4 

 Q. 2 Check in Section 5 

Check In progress-II 

Answer Q. 1 Check in Section 6.1 

 Q. 2 Check in Section 6.1 
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UNIT 12: GREEN’S FUNCTION 
 

STRUCTURE 

  12.0 Objective 

12.1 Introduction 

12.2 Definition And Uses 

12.3 Green's Function 

12.3.1 Green's Function--Poisson's Equation 

 12.3.2 Green's Function--Helmholtz Differential Equation 

 12.3.3 Green Function For Ordinary Differential Equations 

 12.3.4  Green Function For Partial Differential Equations 

 12.3.5 Green Function In Function Theory 

12.4 Fredholm Theorems 

12.5 Differential Operator 

12.6 Let’s Sum Up 

12.7 Keyword 

12.8 Questions For Review 

12.9 Suggestion Reading And References 

12.10 Answer To Check In Progress 

12.0 OBJECTIVE 

 In this unit we study Green’s Function and its examples 

 We also study A Green’s Function of a linear Differential 

operator.  

 WE LEARN GREEN'S FUNCTION--POISSON'S EQUATION 

AND ITS EXAMPLES. 

 We also learn Helmholtz Differential Equation and Green 

Function for Ordinary Differential Equations 

 We study Green function for partial differential equations and 

Fredohlm Operator 

 

12.1 INTRODUCTION 
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A function related to integral representations of solutions of boundary 

value problems for differential equations. 

The Green function of a boundary value problem for a linear differential 

equation is the fundamental solution of this equation satisfying 

homogeneous boundary conditions. The Green function is the kernel of 

the integral operator inverse to the differential operator generated by the 

given differential equation and the homogeneous boundary conditions 

(cf. Kernel of an integral operator). The Green function yields solutions 

of the inhomogeneous equation satisfying the homogeneous boundary 

conditions. Finding the Green function reduces the study of the 

properties of the differential operator to the study of similar properties of 

the corresponding integral operator. 

In mathematics, a Green's function of 

an inhomogeneous linear differential operator defined on a domain with 

specified initial conditions or boundary conditions is its impulse 

response. 

This means that if L is the linear differential operator, then 

 the Green's function G is the solution of the equation LG = δ, 

where δ is Dirac's delta function; 

 the solution of the initial-value problem Ly = f is 

the convolution (G * f), where G is the Green's function. 

Through the superposition principle, given a linear ordinary differential 

equation (ODE), L(solution) = source, one can first solve L(green) = δs, 

for each s, and realizing that, since the source is a sum of delta functions, 

the solution is a sum of Green's functions as well, by linearity of L. 

Green's functions are named after the British mathematician George 

Green, who first developed the concept in the 1830s. In the modern study 

of linear partial differential equations, Green's functions are studied 

largely from the point of view of fundamental solutions instead. 

Under many-body theory, the term is also used in physics, specifically 

in quantum field 

theory, aerodynamics, aeroacoustics, electrodynamics, seismology and st

atistical field theory, to refer to various types of correlation functions, 
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even those that do not fit the mathematical definition. In quantum field 

theory, Green's functions take the roles of propagators. 

12.2 DEFINITION AND USES 

A Green's function, G(x,s), of a linear differential operator L 

=  L(x) acting on distributions over a subset of the Euclidean space Rn, at 

a point s, is any solution of 

 

 

L   G(x , s ) =    (s – x )  

where δ is the Dirac delta function. This property of a Green's function 

can be exploited to solve differential equations of the form 

       L u(x) = f(x) 

If the kernel of L is non-trivial, then the Green's function is not unique. 

However, in practice, some combination of symmetry, boundary 

conditions and/or other externally imposed criteria will give a unique 

Green's function. Green's functions may be categorized, by the type of 

boundary conditions satisfied, by a Green's function number. Also, 

Green's functions in general are distributions, not necessarily functions of 

a real variable. 

Green's functions are also useful tools in solving wave 

equations and diffusion equations. In quantum mechanics, the Green's 

function of the Hamiltonian is a key concept with important links to the 

concept of density of states. 

The Green's function as used in physics is usually defined with the 

opposite sign, instead. That is, 

 
L   G(x , s ) =    (s – x ) 

 

This definition does not significantly change any of the properties of the 

Green's function due to the evenness of the Dirac delta function. 

G(x , s ) =    (s – x ) 
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If the operator is translation invariant, that is, when L has constant 

coefficients with respect to x, then the Green's function can be taken to 

be a convolution kernel, that is,  

In this case, the Green's function is the same as the impulse response 

of linear time-invariant system theory. 

12.3 GREEN'S FUNCTION 

 

Generally speaking, a Green's function is an integral kernel that can be 

used to solve differential equations from a large number of families 

including simpler examples such as ordinary differential 

equations with initial or boundary value conditions, as well as more 

difficult examples such as inhomogeneous partial differential 

equations (PDE) with boundary conditions. Important for a number of 

reasons, Green's functions allow for visual interpretations of the actions 

associated to a source of force or to a charge concentrated at a point, thus 

making them particularly useful in areas of applied mathematics. In 

particular, Green's function methods are widely used in, e.g., physics, 

and engineering. 

More precisely, given a linear differential operator  acting on 

the collection of distributions over a subset  of some Euclidean 

space , a Green's function  at the point  corresponding 

to  is any solution of 

 

(1) 

where  denotes the delta function. The motivation for defining such a 

function is widespread, but by multiplying the above identity by a 

function  and integrating with respect to  yields 
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(2) 

The right-hand side reduces merely to  due to properties of the delta 

function, and because  is a linear operator acting only on  and not 

on , the left-hand side can be rewritten as 

 

(3) 

This reduction is particularly useful when solving for  in 

differential equations of the form 

 

(4) 

where the above arithmetic confirms that 

 

(5) 

and whereby it follows that  has the specific integral form 

 

(6) 

The figure above illustrates both the intuitive physical interpretation of a 

Green's function as well as a relatively simple associated differential 

equation with which to compare the above definition. In particular, it 

shows a taut rope of length  suspended between two walls, held into 

place by an identical horizontal force  applied on each of its ends, and a 

lateral load  placed at some interior point  on the rope. Let  be the 

point corresponding to  on the deflected rope, suppose the downward 

force  is constant, say , and let  denote the deflection of the 

rope. Corresponding to this physical system is the differential equation 

 

(7) 

for  with , a system whose simplicity allows both 

its solution  and its Green's function  to be written explicitly: 

 

(8) 
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and 

 

(9) 

respectively. As demonstrated in the above figure, the displaced rope has 

the piecewise linear format given by  above, thus confirming 

the claim that the Green's function  associated to this system represents 

the action of the horizontal rope corresponding to the application of a 

force . 

A Green's function taking a pair of arguments  is sometimes referred 

to as a two-point Green's function. This is in contrast to multi-point 

Green's functions which are of particular importance in the area of many-

body theory. 

As an elementary example of a two-point function as defined above, 

consider the problem of determining the potential  generated by a 

charge distribution whose charge density is , whereby applications 

of Poisson's equation and Coulomb's law to the potential at  produced 

by each element of charge  yields a solution 

 

(10) 

which holds, under certain conditions, over the region where . 

Because the right-hand side can be viewed as an integral operator 

converting  into , one can rewrite this solution in terms of a Green's 

function  having the form 

 

(11) 

whereby the solution can be rewritten: 

 

(12) 
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The above figure shows the Green's function associated to the solution of 

the -  equation discussed above where here,  and , 

respectively , is plotted on the -, respectively -, axis. 

A somewhat comprehensive list of Green's functions corresponding to 

various differential equations is maintained online by Kevin Cole (Cole 

2000). 

Due to the multitude of literature written on Green's functions, several 

different notations and definitions may emerge, some of which are 

topically different than the above but which in general do not affect the 

important properties of the results. As the above example illustrates, for 

instance, some authors prefer to denote the variables  and  in terms of 

vectors  and  to emphasize the fact that they're elements of  for 

some  which may be larger than 1 (Arfken 1985). It is also relatively 

common to see the definition with a negative sign so that  is defined to 

be the function for which 

 

(13) 

but due to the fact that this purely-physical consideration has no effect on 

the underlying mathematics, this point of view is generally overlooked. 

Several other notations are also known to exist for a Green's function, 

some of which include the use of a lower-case  in place 

of  (Stakgold 1979) as well as the inclusion of a vertical line 

instead of a comma, e.g.,  (Duffy 2001). 

In other instances, literature presents definitions which are intimately 

connected to the contexts in which they're presented. For example, some 

authors define Green's functions to be functions which satisfy a certain 
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set of conditions, e.g.,existence on a special kind of domain, association 

with a very particular differential operator , or satisfaction of a precise 

set of boundary conditions. One of the most common such examples can 

be found in notes by, e.g., Speck, where a Green's function is defined to 

satisfy  for points  and  for all 

points  lying in the boundary  of  (Speck 2011). This particular 

definition presents an integral kernel corresponding to the solution of a 

generalized Poisson's equation and would therefore face obvious 

limitations when being adapted to a more general setting. On the other 

hand, such examples aren't without their benefits. In the case of the 

generalized Poisson example above, for instance, each such Green's 

function  can be split so that 

 

(14) 

where  and  for the 

regular Laplacian  (Hartman 2013). In such 

situations,  is known as the fundamental solution of the 

underlying differential equation and  is known as its regular 

solution; as such,  and  are sometimes called the fundamental and 

regular parts of , respectively. 

Several fundamental properties of a general Green's function follow 

immediately (or almost so) from its definition and carry over to all 

particular instances. For example, if the kernel of the operator  is non-

trivial, then there may be several Green's functions associated to a single 

operator; as a result, one must exhibit caution when referring to "the" 

Green's function. Green's functions satisfy an adjoint symmetry in their 

two arguments so that 

 

(15) 

where here,  is defined to be the solution of the equation 

 

(16) 

Here,  is the adjoint of . One immediate corollary of this fact is that 

for self-adjoint operators ,  is symmetric: 
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(17) 

This identity is often called the reciprocity principle and says, in physical 

terms, that the response at  caused by a unit source at  is the same as 

the response at  due to a unit force at  (Stakgold 1979). 

The essential property of any Green's function is that it provides a way to 

describe the response of an arbitrary differential equation solution to 

some kind of source term in the presence of some number of boundary 

conditions. Some authors consider a Green's function to serve roughly an 

analogous role in the theory of partial differential equations as do Fourier 

series in the solution of ordinary differential equations . 

For more abstract scenarios, a number of concepts exist which serve as 

context-specific analogues to the notion of a Green's function. For 

instance, in functional analysis, it is often useful to consider a so-called 

generalized Green's function which has many analogous properties when 

integrated abstractly against functionals rather than functions. Indeed, 

such generalizations have yielded an entirely analogous branch of 

theoretical PDE analysis and are themselves the focus of a large amount 

of research. 

Check In Progress-I 

Q. 1 Define Green’s Function. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Write Definition of Green’s Function.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

12.3.1 Green's Function--Poisson's Equation 

 

Poisson's equation is 

 

(1) 

where  is often called a potential function and  a density function, so 

the differential operator in this case is . As usual, we are looking 

for a Green's function  such that 

 

(2) 

But from Laplacian, 

 

(3) 

so 

 

(4) 

and the solution is 

 

(5) 

Expanding  in the spherical harmonics  gives 

 

(6) 

where  and  are greater than/less than symbols. this expression 

simplifies to 

 

(7) 
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where  are Legendre polynomials, and . Equations (6) and 

(7) give the addition theorem for Legendre polynomials. 

In cylindrical coordinates, the Green's function is much more 

complicated, 

 

(8) 

where  and  are modified Bessel functions of the 

first and second kinds. 

12.3.2 Green's Function--Helmholtz Differential 

Equation 

The inhomogeneous Helmholtz differential equation is 

 

(1) 

where the Helmholtz operator is defined as . The Green's 

function is then defined by 

 

(2) 

Define the basis functions  as the solutions to the 

homogeneous Helmholtz differential equation 

 

(3) 

The Green's function can then be expanded in terms of the s, 

 

(4) 

and the delta function as 

 

(5) 

Plugging (◇) and (◇) into (◇) gives 
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(6) 

Using (◇) gives 

 

(7) 

 

(8) 

This equation must hold true for each , so 

 

(9) 

 

(10) 

and (◇) can be written 

 

(11) 

The general solution to (◇) is therefore 

  

 

(12) 

  

 

(13) 

 

12.3.3 Green Function for Ordinary Differential 

Equations 

Let  be the differential operator generated by the differential 

polynomial 

 

and the boundary conditions , , where 

 

The Green function of  is the function  that satisfies the 

following conditions: 
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1)  is continuous and has continuous derivatives with respect 

to  up to order  for all values of  and  in the interval . 

2) For any given  in  the function  has uniformly-

continuous derivatives of order  with respect to  in each of the half-

intervals  and  and the derivative of order  satisfies 

the condition 

 

if . 

3) In each of the half-intervals  and  the 

function , regarded as a function of , satisfies the 

equation  and the boundary conditions 

, . 

If the boundary value problem  has trivial solutions only, 

then  has one and only one Green function [1]. For any continuous 

function  on  there exists a solution of the boundary value 

problem , and it can be expressed by the formula 

 

If the operator  has a Green function , then the adjoint 

operator  also has a Green function, equal to . In particular, 

if  is self-adjoint ( ), then , i.e. the Green 

function is a Hermitian kernel in this case. Thus, the Green function of 

the self-adjoint second-order operator  generated by the differential 

operator with real coefficients 

 

and the boundary conditions ,  has the form: 
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Here  and  are arbitrary independent solutions of the 

equation  satisfying, respectively, the conditions 

, ; , where  is the Wronski 

determinant (Wronskian) of  and . It can be shown that  is 

independent of . 

If the operator  has a Green function, then the boundary eigen value 

problem  is equivalent to the integral 

equation , to which Fredholm's 

theory is applicable (cf. also Fredholm theorems). For this reason the 

boundary value problem  can have at most a countable 

number of eigen values  without finite limit points. The 

conjugate problem has complex-conjugate eigen values of the same 

multiplicity. For each  that is not an eigen value of  it is possible to 

construct the Green function  of the operator , 

where  is the identity operator. The function  is a 

meromorphic function of the parameter ; its poles can be eigen values 

of  only. If the multiplicity of the eigen value  is one, then 

 

where  is regular in a neighbourhood of the point , 

and  and  are the eigen functions 

of  and  corresponding to the eigen values  and  and 

normalized so that 

 

If  has infinitely-many poles and if these are of the first 

order only, then there exists a complete biorthogonal system 

 

of eigen functions of  and . If the eigen values are numbered in 

increasing sequence of their absolute values, then the integral 
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is equal to the partial sum 

 

of the expansion of  with respect to the eigen functions of . The 

positive number  is so selected that the function  is 

regular in  on the circle . For a regular boundary value 

problem and for any piecewise-smooth function  in the 

interval , the equation 

 

is valid, that is, an expansion into a convergent series is possible [1]. 

If the Green function  of the operator  has multiple 

poles, then its principal part is expressed by canonical systems of eigen 

and adjoint functions of the operators  and  [2]. 

In the case considered above, the boundary value problem  has no 

non-trivial solutions. If, on the other hand, such non-trivial solutions 

exist, a so-called generalized Green function is introduced. Let there 

exist, e.g., exactly  linearly independent solutions of the 

problem . Then a generalized Green function  exists 

that has properties 1) and 2) of an ordinary Green function, satisfies the 

boundary conditions as a function of  if  and, in addition, is 

a solution of the equation 

 

Here  is a system of linearly independent solutions of the 

adjoint problem , while  is an arbitrary system 

of continuous functions biorthogonal to it. Then 
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is the solution of the boundary value problem  if the 

function  is continuous and satisfies the solvability criterion, i.e. is 

orthogonal to all . 

If  is one of the generalized Green functions of , then any other 

generalized Green function can be represented in the form 

 

where  is a complete system of linearly independent solutions 

of the problem , and  are arbitrary continuous functions. 

 

12.3.4 Green function for partial differential 

equations 

1) Elliptic equations. Let  be the elliptic differential operator of 

order  generated by the differential polynomial 

 

in a bounded domain  and the homogeneous boundary 

conditions , where  are boundary operators with coefficients 

defined on the boundary  of , which is assumed to be sufficiently 

smooth. A function  is said to be a Green function for  if, for 

any fixed , it satisfies the homogeneous boundary 

conditions  and if, regarded as a generalized function, it 

satisfies the equation 

 

In the case of operators with smooth coefficients and normal boundary 

conditions, which ensure that the solution of the homogeneous boundary 

value problem is unique, a Green function exists and the solution of the 

boundary value problem  can be represented in the form (cf. [4]) 



Notes 

146 

 

In such a case the uniform estimates for , 

 

 

are valid for the Green function, and the latter is uniformly bounded 

if . 

The boundary eigen value problem  is equivalent to the 

integral equation 

 

to which Fredholm's theory (cf. [5]) is applicable (cf. Fredholm 

theorems). Here, the Green function of the adjoint boundary value 

problem is . It follows, in particular, that the number of eigen 

values is at most countable, and there are no finite limit points; the 

adjoint boundary value problem has complex-conjugate eigen values of 

the same multiplicity. 

A Green function has been more thoroughly studied for second-order 

equations, since the nature of the singularity of the fundamental 

solution can be explicitly written out. Thus, for the Laplace operator the 

Green function has the form 

 

 

where  is a harmonic function in  chosen so that the Green 

function satisfies the boundary condition. 

The Green function  of the first boundary value problem for a 

second-order elliptic operator  with smooth coefficients in a 

domain  with Lyapunov-type boundary , makes it possible to 

express the solution of the problem 
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in the form 

 

where  is the derivative along the outward co-normal of the 

operator  and  is the surface element on . 

If the homogeneous boundary condition  has non-trivial 

solutions, a generalized Green function is introduced, just as for ordinary 

differential equations. Thus, a generalized Green function, the so-

called Neumann function [3], is available for the Laplace operator. 

2) Parabolic equations. Let  be the parabolic differential operator of 

order  generated by the differential polynomial 

 

 

and the homogeneous initial and boundary conditions 

 

where  are boundary operators with coefficients defined 

for  and . The Green function of the operator  is a 

function  which for arbitrary 

fixed  with  and  satisfies the homogeneous 

boundary conditions  and also satisfies the equation 

 

For operators with smooth coefficients and normal boundary conditions, 

which ensures the uniqueness of the solution of the problem , a 

Green function exists, and the solution of the equation 

 

satisfying the homogeneous boundary conditions and the initial 

conditions , has the form 
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In the study of elliptic or parabolic systems the Green function is 

replaced by the concept of a Green matrix, by means of which solutions 

of boundary value problems with homogeneous boundary conditions for 

these systems are expressed as integrals of the products of a Green 

matrix by the vectors of the right-hand sides and the initial 

conditions [7]. 

Green functions are named after G. Green (1828), who was the first to 

study a special case of such functions in his studies on potential theory. 

12.3.5 Green Function in Function Theory 

In the theory of functions of a complex variable, a (real) Green function 

is understood to mean a Green function for the first boundary value 

problem for the Laplace operator, i.e. a function of the type 

 

(1) 

where  is the complex variable,  is the pole of 

the Green function, , and  is a harmonic function 

of  which takes the values  at the boundary . Let 

the domain  be simply-connected and let  be the 

analytic function which realizes the conformal mapping of  onto the 

unit disc so that  maps to the centre of the disc, and such 

that , . 

Then 

 

(2) 

If  is the harmonic function conjugate with 

, , then the analytic 

function  is said to be a complex 

Green function of  with pole . The inversion of formula (2) yields 
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(3) 

Formulas (2) and (3) show that the problems of constructing a conformal 

mapping of  into the disc and of finding a Green function are 

equivalent. The Green functions ,  are invariant under 

conformal mappings, which may sometimes facilitate their identification 

(see Mapping method). 

In the theory of Riemann surfaces it is more convenient to define Green 

functions with the aid of a minimum property, valid for a function (1): Of 

all functions  on a Riemann surface  that are positive and 

harmonic for  and have in a neighbourhood of  the form 

 

(4) 

where  is a harmonic function which is regular on the entire 

surface , the Green function, if it exists, is the least, 

i.e. . Here, the existence of a Green function is 

typical for Riemann surfaces of hyperbolic type. If a Green function is 

thus defined, it no longer vanishes, generally speaking, anywhere on the 

(ideal) boundary of the Riemann surface. The situation is similar 

in potential theory (see also Potential theory, abstract). For an arbitrary 

open set , e.g. in the Euclidean space , , the Green 

function  can also be defined with the aid of the minimum 

property discussed above, but for  the 

expression  should be substituted for  in 

formula (4). In general, such a Green function does not necessarily tend 

to zero as the boundary  is approached. A Green function does not 

exist for Riemann surfaces of parabolic type or for certain domains 

in  (e.g. for ). 

 

Check In Progress-II 

Q. 1 Define Green Function for Ordinary Differential Equations.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  .. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 
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12.4 FREDHOLM THEOREMS 

 

Theorem 1.The homogeneous equation 

 

(1) 

and its transposed equation 

 

(2) 

have, for a fixed value of the parameter , either only the trivial solution, 

or have the same finite number of linearly independent 

solutions: ; . 

Theorem 2. For a solution of the inhomogeneous equation 

 

(3) 

to exist it is necessary and sufficient that its right-hand side be 

orthogonal to a complete system of linearly independent solutions of the 

corresponding homogeneous transposed equation (2): 
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(4) 

Theorem 3. (the Fredholm alternative). Either the inhomogeneous 

equation (3) has a solution, whatever its right-hand side , or the 

corresponding homogeneous equation (1) has non-trivial solutions. 

Theorem 4. The set of characteristic numbers of equation (1) is at 

most countable, with a single possible limit point at infinity. 

For the Fredholm theorems to hold in the function space  it is 

sufficient that the kernel  of equation (3) be square-integrable on the 

set  (  and  may be infinite). When this condition is 

violated, (3) may turn out to be a non-Fredholm integral equation. When 

the parameter  and the functions involved in (3) take complex values, 

then instead of the transposed equation (2) one often considers the 

adjoint equation to (1): 

 

In this case condition (4) is replaced by 

 

These theorems were proved by E.I. Fredholm 

 

12.5DIFFERENTIAL OPERATOR 

A generalization of the concept of a differentiation operator. A 

differential operator (which is generally discontinuous, unbounded and 

non-linear on its domain) is an operator defined by some differential 

expression, and acting on a space of (usually vector-valued) functions (or 

sections of a differentiable vector bundle) on differentiable manifolds or 

else on a space dual to a space of this type. A differential expression is a 

mapping  of a set  in the space of sections of a vector bundle  with 
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base  into the space of sections of a vector bundle  with the same 

base such that for any point  and arbitrary sections  the 

coincidence of their -jets (cf. Jet) at  entails the coincidence 

of  and  at that point. The smallest number  which meets this 

condition for all  is said to be the order of the differential 

expression and the order of the differential operator defined by this 

expression. 

A differential operator on a manifold  without boundary often proves 

to be an extension of an operator which is defined in a natural manner by 

a fixed differential expression on some set, open in an appropriate 

topology, of infinitely (or sufficiently often) differentiable sections of a 

given vector bundle  with base , and thus permits a natural extension 

to the case of sheaves of germs of sections of differentiable vector 

bundles. A differential operator  on a manifold  with 

boundary  is often defined as an extension of an analogous operator 

which is naturally defined by a differential expression on the set of 

differentiable functions (or sections of a vector bundle), the restrictions 

of which to  lie in the kernel of some differential 

operator  on  (or satisfies some other conditions definable by some 

requirements to be satisfied in the domain of values of an operator  on 

the restrictions of the functions from the domain of definition of , such 

as inequalities); the differential operator  is said to define the boundary 

conditions for the differential operator . Linear differential operators on 

spaces dual to spaces of functions (or sections) are defined as operators 

dual to the differential operators of the above type on these spaces. 

Examples. 

1) Let  be a real-valued function of  variables , 

defined in some rectangle ; the differential 

expression 

 

(where  usually satisfies some regularity conditions such as 

measurability, continuity, differentiability, etc.) defines a differential 
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operator  on the manifold , the domain of definition  of which 

consists of all functions  satisfying the 

condition  for . If  is continuous,  may be 

considered as an operator on  with domain of definition ; the 

differential operator  is said to be a general ordinary differential 

operator. If  depends on , the order of  is .  is said to be quasi-

linear if it depends linearly on ; it is linear if  depends linearly 

on ; it is said to be linear with constant coefficients if  is 

independent of  and if  is a linear differential operator. The remaining 

differential operators are said to be non-linear. If certain conditions as to 

the regularity of  are satisfied, a quasi-linear operator may be extended 

to a differential operator from one Sobolev space into another. 

2) Let  run through a domain  in , 

let  be a differential expression defined by a real-

valued function  on the product of  and some open rectangle , 

where  is a set of partial derivatives of the 

type , 

where , and, as in example 1), let the 

function  satisfy certain regularity conditions. The differential operator 

defined by this expression on the space of sufficiently often 

differentiable functions on  is known as a general partial differential 

operator. As in example 1), one defines non-linear, quasi-linear and 

linear partial differential operators and the order of a partial differential 

operator; a differential operator is said to be elliptic, hyperbolic or 

parabolic if it is defined by a differential expression of the respective 

type. One sometimes considers functions  depending on derivatives of 

all orders (e.g. as their formal linear combination); such differential 

expressions, although not defining a differential operator in the ordinary 

sense, can nevertheless be brought into correspondence with certain 

operators (e.g. on spaces of germs of analytic functions), and are known 

as differential operators of infinite order. 

3) The previous examples may be extended to include the complex-

valued case or the case of functions with values in a locally compact, 
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totally disconnected field and (at least in the case of linear differential 

operators) even to a more general situation (cf. Differential algebra). 

4) Systems of differential expressions define differential operators on 

spaces of vector functions. For example, the Cauchy–Riemann 

differential operator, defined by the 

expression , converts 

the space of pairs of harmonic functions on the plane into itself. 

In the definition of a differential operator and of its generalizations one 

often employs (besides ordinary derivatives) generalized derivatives, 

which appear in a natural manner when considering extensions of 

differential operators defined on differentiable functions, and weak 

derivatives, related to the transition to the adjoint operator. Moreover, 

derivatives of fractional and negative orders appear when the 

differentiation is defined by means of a Fourier transform (or some other 

integral transform), applicable to the domain of definition and range of 

such a generalized differential operator (cf. Pseudo-differential operator). 

This is done in order to obtain the simplest possible representation of the 

corresponding differential operator of a function  and to attain a 

reasonable generality in the formulation of problems and satisfactory 

properties of the objects considered. In this way, a functional or 

operational calculus is obtained, extending the correspondence between 

the differentiation operator and the operator of multiplication by the 

independent variable as realized in the Fourier transform. 

Problems in the theory of differential equations — such as problems of 

existence, uniqueness, regularity, continuous dependence of the solutions 

on the initial data or on the right-hand side, the explicit form of a 

solution of a differential equation defined by a given differential 

expression — are readily interpreted in the theory of operators as 

problems on the corresponding differential operator defined on suitable 

function spaces — viz. as problems on kernels, images, the structure of 

the domain of definition of a given differential operator  or of its 

extension, continuity of the inverse of the given differential operator and 

explicit construction of this inverse operator. Problems of the 

approximation of solutions and of the construction of approximate 

solutions of differential equations are also readily generalized and 
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improved as problems on the corresponding differential operators, viz. 

— selection of natural topologies in the domain of definition and in the 

range such that the operator  (if the solutions are unique) realizes a 

homeomorphism of the domains of definition and ranges in these 

topologies (this theory is connected with the theory of interpolation and 

scales (grading) of function spaces, in particular for linear and quasi-

linear differential operators). Another example is the selection of 

differential operators close to a given operator in some definite sense 

(which makes it possible by using appropriate topologies in the space of 

differential operators, to justify methods of approximation of equations, 

such as the regularization and the penalty method, and iterated 

regularization methods). The theory of differential operators makes it 

possible to apply classical methods in the theory of operators, e.g. the 

theory of compact operators, and the method of contraction mappings in 

various existence and uniqueness theorems for differential equations, in 

the theory of bifurcation of solutions and in non-linear eigen value 

problems. Other applications utilize a natural order structure present in 

function spaces on which a differential operator is defined (in particular, 

the theory of monotone operators), or use methods of linear analysis (the 

theory of duality, convex sets, dual or dissipative operators). Again, 

variational methods and the theory of extremal problems or the presence 

of certain supplementary structures (e.g. complex, symplectic, etc.) can 

be used in order to clarify the structure of the kernel and range of the 

differential operator, i.e. to obtain information on the solution space of 

the respective equations. Many problems connected with differential 

expressions necessitate a study of differential inequalities, which are 

closely connected with multi-valued differential operators. 

Thus, the theory of differential operators makes it possible to eliminate a 

number of difficulties involved in the classical theory of differential 

equations. The utilization of various extensions of classical differential 

operators leads to the concept of generalized solutions of the 

corresponding differential equations (which necessarily proved to be 

classical in several cases connected with, say, elliptic problems), while 

the utilization of the linear structure makes it possible to introduce the 

concept of weak solutions of differential equations. In choosing a 
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suitable extension of a differential operator as defined by a differential 

expression, a priori estimates of solutions connected with such an 

expression are of importance, since they permit one to identify function 

spaces on which the extended operator is continuous or bounded. 

Moreover, the theory of differential operators also makes it possible to 

formulate and solve many new problems, which are qualitatively 

different from the classical problems in the theory of differential 

equations. Thus, in the study of non-linear operators it is of interest to 

study the structure of the set of its stationary points and the action of the 

operator in a neighbourhood of them, as well as the classification of 

these singular points, and the stability of the type of the singular point 

when the respective differential operator is perturbed. Other subjects of 

interest in the theory of linear differential operators are the description 

and the study of the spectrum of a differential operator, the calculation of 

its index, the structure of invariant subspaces of the differential operator, 

the harmonic analysis of a given differential operator (in particular, the 

decomposition, which requires a preliminary study of the completeness 

of the system of eigen functions and associated functions). There is also 

the study of linear and non-linear perturbations of a given differential 

operator. These results are of special interest for elliptic differential 

operators generated by symmetric differential expressions in the context 

of the theory of self-adjoint operators on a Hilbert space (in particular, in 

the spectral theory of these operators and the theory of extensions of 

symmetric operators). The theory of various hyperbolic and parabolic 

(not necessarily linear) differential operators is connected with the theory 

of groups and semi-groups of operators on locally convex spaces. 

Next to the linear class of differential operators, perhaps the most 

intensively studied class are differential operators which are either 

invariant or which vary according to a specific law when certain 

transformations constituting a group (or a semi-group)  are acting in 

their domain of definition, and hence also on the differential expression. 

These include, for instance, invariant differential operators connected 

with the representations of a group ; the covariant derivative or, more 

generally, differential operators on spaces of differentiable tensor fields, 

where  is the group of all diffeomorphisms (the so-called atomization); 
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many examples of operators in theoretical physics, etc. Such functional-

geometric methods are also useful in the study of differential operators 

with so-called hidden symmetry (see, for example, Korteweg–de Vries 

equation). 

The theory of differential operators as part of the general theory of 

operators has lately been of increasing importance not merely in the 

theory of differential equations, but in modern analysis in general. It 

yields not only important specific examples of unbounded operators 

(particularly in the theory of linear differential operators), but also tools 

for the representation and means of study of other objects of various 

natures. For instance, any generalized function (and even a 

hyperfunction) is locally obtained by the action of a certain generalized 

differential operator on a continuous function. Finally, differential 

operators are becoming more important in other branches of mathematics 

and effect these to an increasing extend. E.g., one solution of the so-

called index problem (cf. Index formulas) connects the topological 

characteristics of a manifold with the presence of a particular class of 

differential operators on it; from this it is possible to deduce the 

properties of elliptic complexes on this manifold. 

12.6 LET’S SUM UP 

1. We study Green's function of 

an inhomogeneous linear differential operator defined on a 

domain with specified initial conditions or boundary conditions is 

its impulse response. 

This means that if L is the linear differential operator, then 

 the Green's function G is the solution of the equation LG = δ, 

where δ is Dirac's delta function; 

 the solution of the initial-value problem Ly = f is 

the convolution (G * f), where G is the Green's function. 

2. We also study Poisson's equation is 
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where  is often called a potential function and  a density function 

3. We learnt The inhomogeneous Helmholtz differential equation is 

  

where the Helmholtz operator is defined as . 

12.7 KEYWORD 

Differential Operator : A differential operator (which is generally 

discontinuous, unbounded and non-linear on its domain) is an operator 

defined by some differential expression, and acting on a space of (usually 

vector-valued) functions (or sections of a differentiable vector bundle) on 

differentiable manifolds. 

Hermitian kernel  : A Hermitian kernel is a kernel that satisfies the 

property. K. ∗(x,t) = K(t,x) = K(x,t) in the square Q(a,b) = {(x,t): a ≤ x ≤ 

b and a ≤ t ≤ b}. We assume as usual that K(x,t) is continuous in Q(a,b). 

Helmholtz Differential : Helmholtz, is the linear 

partial differential equation. where is the Laplacian, is the wave number, 

and is the amplitude. This is also an eigenvalue equation. 

12.8 QUESTIONS FOR REVIEW 

Q. 1 State Green’s Function. 

Q. 2 Define Green’s Function with Poison’s Function 

Q. 3 Define Green's Function--Helmholtz Differential Equation. 

Q. 4 STATE FREDHOLM THEOREMS IN THREE CASE. 

Q. 5 Define Differential Operator.  
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12.10 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 4 

 Q. 2 Check in Section 3 

Check In progress-II 

Answer Q. 1 Check in Section 4.4 

 Q. 2 Check in Section 4.5 
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UNIT 13: STURM COMPARISON 

THEOREMS AND OSCILLATIONS 
 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.2 Preliminaries 

13.3 Main Results 

13.4 Sturm-Liouville Equation 

13.5 DISCONJUGACY 

13.6 Oscillating Differential Equation 

13.6.1 OSCILLATING SOLUTION 

13.7 Let’s Sum Up 

13.8 Keyword 

13.9 Questions For Review 

13.10 Suggestion Reading and References  

13.11 Answer to Check in Progress 

 

13.0 OBJECTIVES 

 In this unit we study Sturm-Picone Comparison Theorem 

 We also study second-order linear equation:   

           

 We study Sturm-Liouville Equation and its proof 

 We also study An th order homogeneous linear differential 

operator (equation) 

 

 (a1) 

 

13.1 INTRODUCTION 

we consider the following second-order linear equations: 

                                                    (1.1) 
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                                                    (1.2) 

where  and  are real and rd-continuous 

functions in  Let  be a time scale,  be the forward jump 

operator in ,  be the delta derivative, and . 

First we briefly recall some existing results about differential and 

difference equations. As we well know, in 1909, Picone [1] established 

the following identity. 

Picone Identity 

If  and  are the nontrivial solutions of 

                                                                                 

(1.3) 

where  and  are real and continuous 

functions in  If  for  then 

                      

(1.4) 

By (1.4), one can easily obtain the Sturm comparison theorem of second-

order linear differential equations (1.3). 

Sturm-Picone Comparison Theorem 

Assume that  and  are the nontrivial solutions of (1.3) and  are 

two consecutive zeros of  if 

                                                                   

(1.5) 

then  has at least one zero on  
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Later, many mathematicians, such as Kamke, Leighton, and Reid [2–5] 

developed thier work. The investigation of Sturm comparison theorem 

has involved much interest in the new century [6, 7]. The Sturm 

comparison theorem of second-order difference equations 

                                                (1.6) 

has been investigated , 

where  on  on  are 

integers, and  is the forward difference operator:  In 

1995, Zhang [9] extended this result. But we will remark that in [8, 

Chapter 8] the authors employed the Riccati equation and a positive 

definite quadratic functional in their proof. Recently, the Sturm 

comparison theorem on time scales has received a lot of attentions. In 

[10, Chapter 4], the mathematicians studied 

                                                            (1.7) 

where  and  for  is the 

nabla derivative, and they get the Sturm comparison theorem. We will 

make use of Picone identity on time scales to prove the Sturm-Picone 

comparison theorem of (1.1) and (1.2). 

This paper is organized as follows. Section 2 introduces some basic 

concepts and fundamental results about time scales, which will be used 

in Section 3. In Section 3 we first give the Picone identity on time scales, 

then we will employ this to prove our main result: Sturm-Picone 

comparison theorem of (1.1) and (1.2) on time scales. 

13.2 PRELIMINARIES 

In this section, some basic concepts and some fundamental results on 

time scales are introduced. 

Let  be a nonempty closed subset. Define the forward and backward 

jump operators  by 
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(2.1) 

where , . A point  is called right-scattered, 

right-dense, left-scattered, and left-dense if , 

and  respectively. We put  if  is unbounded above 

and  otherwise. The graininess 

functions  are defined by 

                                                                      

(2.2) 

Let  be a function defined on .  is said to be (delta) differentiable 

at  provided there exists a constant  such that for any , there is 

a neighborhood  of  (i.e.,  for some ) with 

(2.3) 

In this case, denote . If  is (delta) differentiable for every , 

then  is said to be (delta) differentiable on . If  is differentiable 

at , then 

                                                 (2.4) 

If  for all , then  is called an antiderivative of  on . 

In this case, define the delta integral by 

                                                      (2.5) 

Moreover, a function  defined on  is said to be rd-continuous if it is 

continuous at every right-dense point in  and its left-sided limit exists at 

every left-dense point in . 

Lemma 2.1. Let  and . 

1. (i)If  is differentiable at , then  is continuous at . 

2. (ii) If  and  are differentiable at , then  is differentiable 

at  and 
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(2.6) 

3. (iii) If  and  are differentiable at , and , then  is 

differentiable at  and 

                             (2.7) 

4. (iv) If  is rd-continuous on , then it has an antiderivative on . 

Definition 2.2.  A function  is said to be right-increasing 

at  provided 

1. (i)   in the case that  is right-scattered; 

2. (ii) there is a neighborhood  of  such that  for 

all  with  in the case that  is right-dense. 

If the inequalities for  are reversed in (i) and (ii),  is said to be right-

decreasing at . 

The following result can be directly derived from (2.4). 

Lemma 2.3.  Assume that  is differentiable 

at  If  then  is right-increasing at ; and 

if , then  is right-decreasing at . 

Definition 2.4. One says that a solution  of (1.1) has a generalized 

zero at  if  or, if  is right-scattered and  Especially, 

if  then we say has a node at  

A function  is called regressive if 

                                                                (2.8) 

Hilger [14] showed that for  and rd-continuous and regressive , 

the solution of the initial value problem 
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(2.9) 

is given by , where 

                  

(2.10) 

The development of the theory uses similar arguments and the definition 

of the nabla derivative. 

 

13.3 MAIN RESULTS 

In this section, we give and prove the main results of this paper. 

First, we will show that the following second-order linear equation: 

                                                                 

(3.1) 

can be rewritten as (1.1). 

Theorem 3.1. If  and  is continuous, then (3.1) can be 

written in the form of (1.1), with 

                                                    

(3.2) 

Proof. Multiplying both sides of (3.1) by , we get 

                      

(3.3) 

where we used Lemma 2.1. This equation is in the form of (1.1) 

with  and  as desired. 
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Lemma 3.2 (Picone Identity).  Let  and  be the nontrivial solutions 

of (1.1) and (1.2) 

with  and  for  If  has no 

generalized zeros on  then the following identity holds: 

                                  

(3.4) 

Proof. We first divide the left part of (3.4) into two parts 

          (3.5) 

From (1.1) and the product rule (Lemma 2.1(ii), we have 

                            

(3.6) 

It follows from (1.2), (2.4), product and quotient rules (Lemma 2.1(ii), 

(iii) and the assumption that  has no generalized zeros 

on  that 
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(3.7) 

Combining  and , we get (3.4). 

This completes the proof. 

Now, we turn to proving the main result of this paper. 

Theorem 3.3 (Sturm-Picone Comparison Theorem). 

Suppose that  and  are the nontrivial solutions of (1.1) and (1.2), 

and  are two consecutive generalized zeros of  if 

                                                  

(3.8) 

then  has at least one generalized zero on  

Proof. Suppose to the contrary,  has no generalized zeros 

on  and  for all  

Case 1. Suppose  are two consecutive zeros of . Then by Lemma 

3.2, (3.4) holds and integrating it from  to  we get 



Notes 

168 

                            

(3.9) 

Noting that  we have 

                                              

(3.10) 

Hence, by (3.9) and  we 

have 

                                              

(3.11) 

which is a contradiction. Therefore, in Case 1,  has at least one 

generalized zero on  

Case 2. Suppose  is a zero of  is a node 

of  and  It follows from the assumption 

that  has no generalized zeros on  and that  for 

all  that  Hence by (2.4) 

and  on , we have 

                (3.12) 
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By integration, it follows from (3.12) and  that 

                                                               

(3.13) 

So, from (3.9) and above argument we obtain that 

                                           

(3.14) 

which is a contradiction, too. Hence, in Case 2,  has at least one 

generalized zero on . 

Case 3. Suppose  is a node of  and  is 

a generalized zero of  Similar to the discussion of (3.12), we have 

      (3.15) 

which implies 

                                                        

(3.16) 

(i)If  is a node of  then  Hence, we 

have (3.12), that is, 

                                                 

(3.17) 
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(ii)If  is a zero of  then 

                                                 

(3.18) 

It follows from (3.4) and Lemma 2.3 that 

                                                          

(3.19) 

is right-increasing on  Hence, from (i) and (ii) that 

              

(3.20) 

which implies 

                               

(3.21) 

From (3.16), (3.21), and (2.4), we have 

     

(3.22) 

Further, it follows from (1.1), (1.2), product rule (Lemma 2.1(ii), and 

(3.22) that 

      (3.23) 

If  and from , , and  we have 

                                                                 

(3.24) 

This contradicts (3.22). Note that . It 

follows from , (3.23), and (3.24) that 
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(3.25) 

On the other hand, it follows from  and  are solutions of (1.1) and 

(1.2) that 

                                                 

(3.26) 

Combining the above two equations we obtain 

      (3.27) 

It follows from (3.27) and (2.4) that 

    (3.28) 

Hence, from  and (3.21), we get 

                                                         

(3.29) 

By referring to  and  it follows that 

                                                                                                        

(3.30) 

which contradicts  

It follows from the above discussion that  has at least one generalized 

zero on  This completes the proof. 
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Remark 3.4. If  then Theorem 3.3 reduces to classical 

Sturm comparison theorem. 

Remark 3.5. In the continuous case: . This result is the same as 

Sturm-Picone comparison theorem of second-order differential equations 

(see Section 1). 

Remark 3.6. In the discrete case: . This result is the same as Sturm 

comparison theorem of second-order difference equations . 

Example 3.7. Consider the following three specific cases: 

                               

(3.31) 

By Theorem 3.3, we have if  and  are the nontrivial solutions of 

(1.1) and (1.2),  are two consecutive generalized zeros 

of  and  then  has at 

least one generalized zero on  Obviously, the above three cases 

are not continuous and not discrete. So the existing results for the 

differential and difference equations are not available now. 

By Remarks 3.4–3.6 and Example 3.7, the Sturm comparison theorem on 

time scales not only unifies the results in both the continuous and the 

discrete cases but also contains more complicated time scales. 

Check In Progress-I 

Q. 1 Write Picano Identity Lemma . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 
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. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  State Sturm-Picone Comparison Theorem.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

13.4 STURM-LIOUVILLE EQUATION 

A second-order ordinary differential equation 

 

where  is a constant and  is a known function called either the 

density or weighting function. The solutions (with appropriate boundary 

conditions) of  are called eigenvalues and the 

corresponding  eigenfunctions. The solutions of this equation 

satisfy important mathematical properties under appropriate boundary 

conditions (Arfken 1985). 

There are many approaches to solving Sturm-Liouville problems in 

the Wolfram Language. Probably the most straightforward approach is to 

use variational (or Galerkin) methods. For example, VariationalBound in 

the Wolfram 

Language package VariationalMethods` and NVariationalBound give 

approximate eigenvalues and eigenfunctions. 

A problem generated by the following equation, where  varies in a 

given finite or infinite interval , 
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(1) 

together with some boundary conditions, where  and  are 

positive,  is real and  is a complex parameter. Serious studies of 

this problem were started by J.Ch. Sturm and J. Liouville. The methods 

and notions that originated during studies of the Sturm–Liouville 

problem played an important role in the development of many directions 

in mathematics and physics. It was and remains a constant source of new 

ideas and problems in the spectral theory of operators and in related 

problems in analysis. Recently it gained even greater significance, when 

its relation to certain non-linear evolution equations of mathematical 

physics were discovered. 

If  is differentiable and  is twice differentiable, then, by a 

substitution, equation (1) can be reduced to (see [1]) 

 

(2) 

It is customary to distinguish between regular and singular problems. A 

Sturm–Liouville problem for equation (2) is called regular if the 

interval  in which  varies is finite and if the function  is 

summable on the entire interval . If the interval  is infinite 

or if  is not summable (or both), then the problem is called singular. 

Below the following possibilities will be considered in some detail: 1) 

the interval  is finite (in this case, without loss of generality, one 

may assume  and ); 2) , ; or 3) 

, . 

. Consider the problem given on the interval  by equation (2) 

and the separated boundary conditions 

 

(3) 

where  is a real summable function on ,  and  are 

arbitrary finite or infinite fixed real numbers and  is a complex 

parameter. If  , then the first (second) condition in 

(3) is replaced by  . To be specific it is further 

assumed that all numbers occurring in the boundary conditions are finite. 
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The number  is called an eigen value for the problem (2), (3) if 

for  equation (2) has a non-trivial solution  that 

satisfies (3); the function  is then called the eigenfunction 

corresponding to the eigenvalue . 

The eigenvalues for the boundary value problem (2), (3) are real; to the 

distinct eigenvalues correspond linearly independent eigenfunctions 

(since  and the numbers  are real, the eigenfunctions for the 

problem (2), (3) can be chosen to be real); 

eigenfunctions  and  corresponding to different eigenvalues 

are unique and orthogonal, i.e. . 

There exists an unboundedly-increasing sequence of 

eigenvalues  for the boundary value problem (2), (3); 

moreover, the eigenfunction  corresponding to the 

eigenvalue  has precisely  zeros in the interval . 

Let  be the Sobolev space of complex-valued functions on 

the interval  that have  absolutely-continuous derivatives 

and with -th derivatives summable on . If , 

then the eigenvalues  of the boundary value problem (2), (3) for 

large  satisfy the following asymptotic equation (see [4]): 

 

 

where  are numbers independent of , 

 

 

 

 does not depend on , and 
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The above implies, in particular, that if , then 

 

where 

 

Thus, the series  is convergent. Its sum is called 

the regularized trace of the problem (2), (3) (see [13]): 

 

Let  be the orthonormal eigenfunctions of the problem 

(2), (3) corresponding to the eigenvalues . For any 

function  the so-called Parseval equality holds: 

 

where 

 

and the following formula for eigen-function expansion is valid: 

 

(4) 

where the series converges in the metric of . Completeness 

and expansion theorems for a regular Sturm–Liouville problem were first 

proved by V.A. Steklov [14]. 

If the function  has a continuous second derivative and satisfies the 

boundary conditions (3), then the following assertions hold (see [15]): 

a) the series (4) converges absolutely and uniformly on  to ; 
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b) the once-differentiated series (4) converges absolutely and uniformly 

on  to ; 

c) at any point where  satisfies some local condition of expansion 

in a Fourier series (e.g. is of bounded variation), the twice-differentiated 

series (4) converges to . 

For any function  the series (4) is uniformly 

equiconvergent with the Fourier cosine series of , i.e. 

 

where 

 

 

This means that the expansion of  with respect to the eigenfunctions of 

the boundary value problem (2), (3) converges under the same conditions 

as the expansion of  in a Fourier cosine series. 

. The differential equation (2) is considered on the half-

line  with a boundary condition at zero: 

 

(5) 

The function  is assumed to be real and summable on any finite 

subinterval of  and  is assumed to be real. 

Let  be a solution of (2) with the initial conditions 

,  (so that  satisfies also the boundary condition 

(5)). Let  be any function from  and 

let , where  is an arbitrary finite 

positive number. For any function  and any number  there is at least 

one decreasing function , , independent of , 

that has the following properties: 
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a) there is a function , which is the limit 

of  for  in the metric of  (the 

space of -measurable functions  for 

which ), i.e. 

 

b) the Parseval equality is valid: 

 

The function  is called the spectral function (or spectral density) 

for the boundary value problem (2), (5) (see [9]–[11]). 

For the spectral function  of the problem (2), (5) the following 

asymptotic formula is true  (for a more precise form, see ): 

 

 

The following equiconvergence theorem is valid : For an arbitrary 

function , let 

 

 

(the integrals converge in the metrics 

of  and , respectively); then for any 

fixed  the integral 

 

converges absolutely and uniformly with respect to , and 
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Let problem (2), (5) have a discrete spectrum, i.e. let its spectrum consist 

of a countable number of eigenvalues  with a unique 

limit point at infinity. Under certain restrictions on the function , for the 

function , i.e. the number of eigenvalues less 

than , the following asymptotic formula is valid: 

 

Simultaneously with , a second solution  of equation 

(2) is introduced, satisfying the conditions 

, , so that  and  form a fundamental 

system of solutions of (2). For a fixed   and  the 

following fractional-linear function is considered: 

 

When the independent variable  varies on the real line, the 

point  describes a circle bounding a disc . It always lies in the 

same half-plane (lower or upper) as . When  increases,  shrinks, 

i.e. for  the disc  lies entirely inside the disc . There is 

(for ) a limit disc or a point ; if 

 

(6) 

then  is a disc, otherwise it is a point. If condition (6) is fulfilled 

for some non-real value of , then it is fulfilled for all values of . In the 

case of a limit disc, for any value of  all solutions of (2) belong 

to , and in the case of a limit point, for any non-real value 
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of  this equation has the solution , 

which belongs to , where  is the limit 

point . 

If , where  is some positive constant, then the case of a 

limit point holds.  

. Consider now equation (2) on the whole line  under 

the assumption that  is a real summable function on every finite 

subinterval of . Let ,  be the 

solutions of (2) satisfying the conditions 

, . 

There is at least one real symmetric non-decreasing matrix-function 

 

with the following properties: 

a) for any function  there exist 

functions , , defined by 

 

where the limit is in the metric of ; 

b) the Parseval equality is valid: 

 

 

13.5 DISCONJUGACY 

An th order homogeneous linear differential operator (equation) 

 

(a1) 
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is called disconjugate on an interval  if no non-trivial solution 

has  zeros on , multiple zeros being counted according to their 

multiplicity. (In the Russian literature this is called non-oscillation on ; 

cf. also Oscillating solution; Oscillating differential equation.) If (a1) has 

a solution with  zeros on an interval, then the infimum of all values 

, , such that some solution has  zeros on  is called the 

conjugate point of  and is denoted by . This infimum is achieved 

by a solution which has a total of at least  zeros at  and  and is 

positive on . If the equation has continuous coefficients, the 

conjugate point  is a strictly increasing, continuous function of . 

The adjoint equation has the same conjugate point as (a1). For general 

properties, see [a1], [a7]. 

There are numerous explicit sufficient criteria for the equation (a1) to be 

disconjugate. Many of them are of the form 

 

where  is some norm of ,  and  are suitable 

constants. These are "smallness conditions" which express the proximity 

of (a1) to the disconjugate equation . See [a12]. 

 is disconjugate on  if and only if it has there the Pólya 

factorization 

 

or the equivalent Mammana factorization 

 

Among the various Pólya factorizations, the most important is the Trench 

canonical form [a11]: If  is disconjugate on , , then there 

is essentially one factorization such that 

, . 

Disconjugacy is closely related to solvability of the de la Vallée-Poussin 

multiple-point problem , , 
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, . The Green's function of a disconjugate operator  and the 

related homogeneous boundary value problem satisfies 

 

for ,  [a7]. Another interesting boundary value 

problem is the focal boundary value problem 

, , , . 

For a second-order equation, the Sturm separation theorem (cf. Sturm 

theorem) yields that non-oscillation (i.e., no solution has a sequence of 

zeros converging to ) implies that there exists a point  such that 

(a1) is disconjugate on . For equations of order  this 

conclusion holds for a class of equations [a2] but not for all 

equations [a4]. 

Particular results about disconjugacy exist for various special types of 

differential equations. 

1) The Sturm–Liouville operator (cf. Sturm–Liouville equation) 

 

(a2) 

has been studied using the Sturm (and Sturm–Picone) comparison 

theorem, the Prüfer transformation and the Riccati 

equation . It is also closely related to the positive 

definiteness of the quadratic functional . 

See [a10], [a1], [a5]. For example, (a2) is disconjugate 

on  if . 

2) Third-order equations are studied in [a3]. 

3) For a self-adjoint differential equation , 

the existence of a solution with two zeros of multiplicity  has been 

studied. Their absence is called -disconjugacy. 

4) Disconjugacy of the analytic equation  in a 

complex domain is connected to the theory of univalent functions. 

See [a8], [a5] and Univalent function. 
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5) Many particularly elegant result are available for two-term 

equations  and their 

generalizations  [a6], [a2]. 

Disconjugacy has also been studied for certain second-order linear 

differential systems of higher dimension [a1], [a9]. In the historical 

prologue of [a9], the connection to the calculus of variations (cf. 

also Variational calculus) is explained. The concepts of disconjugacy and 

oscillation have also been generalized to non-linear differential equations 

and functional-differential equations. 

 

Check In Progress-II 

Q. 1 State Sturm-Liouville Equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Define Sturm–Liouville operator in brief .  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

13.6 OSCILLATING DIFFERENTIAL 

EQUATION 

An ordinary differential equation which has at least one oscillating 

solution. There are different concepts of the oscillation of a solution. The 
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most widespread are oscillation at a point (usually taken to be ) 

and oscillation on an interval. A non-zero solution of the equation 

 

(1) 

where , is called oscillating at the point  (or on 

an interval ) if it has a sequence of zeros which converges 

to  (respectively, there are at least  zeros in  counted according 

to their multiplicity). Equation (1) is oscillating at  or on an 

interval  if its solutions are oscillating (at , respectively, on ). 

Among equations which are oscillatory at  the equations which 

possess the properties  or , i.e. which are compatible in a specific 

sense with one of the equations 

 

are distinguished. Equation (1) is said to possess property  if all its 

solutions defined in a neighbourhood of  are oscillating when  is 

even; when  is odd, they should either be oscillating or satisfy the 

condition 

 

(2) 

If every solution of equation (1) defined in a neighbourhood of , 

when  is even, is either oscillating, or satisfies condition (2) or 

 

(3) 

while when  is odd, it is either oscillating or satisfies condition (3), then 

the equation possesses property . 

The linear equation 

 

(4) 

with a locally summable coefficient  possesses 

property  (property ) if 

 

and either 
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or 

 

when , where  and  is the smallest (  is the largest) of 

the local minima (maxima) of the polynomial  .  

An equation of Emden–Fowler type 

 

(5) 

with a locally summable non-positive (non-negative) 

coefficient  possesses property  (property ) if 

and only if 

 

where  . 

In a number of cases the question of the oscillation of equation (1) can be 

reduced to the same question for the standard equations of the form (4) 

and (5) using a comparison theorem. 

In studying the oscillatory properties of equations with deviating 

argument, certain specific features arise. For example, if  is 

odd, , and if for large  the inequality 

 

is fulfilled, then all non-zero solutions of the equation 

 

are oscillatory at   At the same time, if  is non-positive and  is 

odd, the non-retarded equation (4) always has a non-oscillating solution. 

The concepts of oscillation and non-oscillation on an interval are 

generally studied for linear homogeneous equations. They are of 

fundamental value in the theory of boundary value problems 
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13.6.1 Oscillating Solution 

A solution  of a differential equation 

 

(*) 

with the property: There exists for any  a point  such 

that  changes sign on passing through it. In many applied problems 

there arises the question of the existence of an oscillating solution or the 

question whether all the solutions of equation (*) oscillate. Many 

sufficient conditions are known under which equation (*) has an 

oscillating solution . For example, any non-trivial solution of the 

equation  with constant coefficients is 

oscillating if ; every non-trivial solution of the equation 

 

with -periodic coefficients is oscillating if 

 

 

and  on . 

In a number of applications there arises the question of the existence of 

oscillating solutions (in the above sense) of a system of ordinary 

differential equations. For example, in control theory one studies the 

oscillation relative to a given hyperplane  of the 

solutions  of the system of 

equations , that is, the question whether the 

function  oscillates. -oscillating 

solutions are also studied; a bounded solution  of the 

system  is called -oscillating if  is oscillating 

and for any  there are points  and  such that 

, , , where . For the 
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system  there also exist other definitions of an oscillating 

solution. 

 

13.7 LET’S SUM UP  

 We study  and  are the nontrivial solutions, and  are 

two consecutive generalized zeros of  if 

                                                 

then  has at least one generalized zero on  

 The Sturm–Liouville operator (cf. Sturm–Liouville equation) 

 

 (a2) 

 In this unit we learnt Oscillating Differential Equation and A non-

zero solution of the equation 

 

 (1) 

where , is called oscillating at the point   

 A second-order ordinary differential equation 

                 

 

13.8 KEYWORDS 

Nontrivial Solution : A solution or example that is not trivial. 

Often, solutions or examples involving the number zero are 

considered trivial. Nonzero solutions or examples are 

considered nontrivial. For example, the equation x + 5y = 0 has the 

trivial solution (0, 0). 

Riccati Equation : a Riccati equation in the narrowest sense is any first-

order ordinary differential equation that is quadratic in the unknown 

function. In other words, it is an equation of the form 

Oscillating  : move or swing back and forth in a regular rhythm 
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13.9 QUESTIONS FOR REVIEW  

Q. 1 State and Prove Sturm-Picone Comparison Theorem. 

Q. 2 Define Sturm–Liouville operator . 

Q. 3 State Sturm-Liouville Equation. 

Q. 4 Write Picano Identity.  

Q. 5 Define disconjugacy in Strum- Picano Comparison Theorem.  
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13.11 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 3 

 Q. 2 Check in Section 3 

Check In progress-II 

Answer Q. 1 Check in Section 4 

 Q. 2 Check in Section 5 
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UNIT 14: EIGENVALUE PROBLEMS 
 

STRUCTURE 

14.0 Objective 

14.1 Introduction 

14.2 Reduction To A Discrete Problem 

14.3 Eigen Oscillation 

14.4 Eigenvalues And Eigenvectors Technique 

 14.4.1 Straight-Line Solutions 

 14.4.2 Computation Of Eiegenvalues 

 14.4.3 Computation Of Eiegenvectors 

 14.4.4 Real Eigenvalues 

 14.4.5 Repeated Eigenvalues 

14.5 Qualitative Analysis Of Systems With Repeated Eigenvalues 

14.5.1 Systems With Zero As An Eigenvalue 

 14.5.2 Complex Eigenvalues 

 14.5.3 Qualitative Analysis Of Systems With Complex 

Eigenvalues 

14.6 Let’s Sum Up 

14.7 Keyword 

14.8 Questions For Review 

14.9 Suggestion Reading And References 

14.10 Answer For Check In Progress 

 

14.0 OBJECTIVES 

 In this unit we study Eigen Value Problems with Reduction to a 

Discrete Problem 

 We also study oscillation occurring in a dynamical system with 

its properties and examples. 
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 We study eigenvalues and eigenvectors technique with examples 

 We study real eigen value and repeated eigenvalues 

 We study computation of eiegenvalues and computation of 

eiegenvectors 

 

14.1 INTRODUCTION 

Methods for computing the eigen values and corresponding eigen 

functions of differential operators. Oscillations of a bounded elastic body 

are described by the equation 

 

(1) 

where  is some differential expression. If one seeks solutions of (1) of 

the form 

 

the following equation for  is obtained: 

 

(2) 

within a bounded domain, under certain homogeneous conditions on the 

boundary. The values of the parameter  for which there exist non-zero 

solutions of (2) satisfying the homogeneous boundary conditions are 

called eigen values, and the corresponding solutions eigen functions. The 

resulting eigen value problem consists of determining the eigen 

values  and the eigen functions corresponding to them. 

The numerical solution of this problem proceeds in three steps: 

1) reduction of the problem to a simpler one, for example, to an algebraic 

(discrete) problem.  

2) specification of the precision of this discrete problem; 

3) calculation of the eigen values for the discrete problem 
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14.2 REDUCTION TO A DISCRETE 

PROBLEM 

The reduction of problem to a discrete model is usually carried out using 

the grid method and projection methods. It is natural to require that the 

basic properties of the original problem, such as the self-adjointness of 

an operator, be preserved in its discrete analogue. 

One method of reduction is the integro-interpolation method. For 

example, consider the problem 

 

(3) 

 

(4) 

This problem arises, for example, in the study of transverse vibrations of 

a non-homogeneous string and longitudinal vibrations of a non-

homogeneous rod. 

On the interval , one introduces the uniform grid  with 

nodes , , . To every node 

, , is assigned an elementary 

domain . Integration of equation 

(3) over  yields 

 

(5) 

Let 

 

 

Then 

 

(6) 
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Substituting (6) into (5), one obtains 

 

where  is the described grid function. The boundary conditions 

,  reduce to an algebraic eigen value problem: 

 

(7) 

where  is tri-diagonal symmetric matrix of order . 

The variational-difference method of reduction to a discrete problem is 

used when the eigen value problem can be formulated as a variational 

one. For example, the eigen values of the problem (3), (4) are the 

stationary values of the functional 

 

By changing the integrals to quadrature sums and the derivatives to 

difference relations, the discrete analogue of this functional has the form 

 

 

where  is the difference analogue of the coefficient , which can be 

calculated by formula (6). The discrete analogue of the problem (3), (4) 

is obtained from the necessary condition for an extremum: 

 

Differentiation again leads to the problem (7) . 

The projection-difference method of reduction to a discrete problem 

consists of the following. One chooses a linearly independent system of 

coordinate functions , , and a linearly independent system 

of projection functions , . One seeks approximate eigen 

functions in the form 
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The coefficients  and the approximate eigen values are determined by 

the condition 

 

(8) 

where  is the scalar product in the Hilbert space. When the coordinate 

and projection systems coincide, one talks of the Bubnov–Galerkin 

method. If, in addition, the operator of the differential problem is self-

adjoint, the method is called the Raleigh–Ritz method. In particular, for 

problem (3), (4), if all  satisfy (4), condition (8) takes the form 

 

(9) 

 

In order to simplify the derivation of the algebraic problem, one chooses 

an almost-orthogonal system of functions . 

By taking as coordinate and projection systems functions of the form 

 

where , it follows from (9) that 

 

 

where 
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Thus, together with the boundary conditions, one obtains a generalized 

eigen value problem: 

 

Here  and  are tri-diagonal symmetric matrices of order . 

These methods also yield discrete models of other equations. For 

example, for a rod: 

 

for a membrane: 

 

and for a plate: 

 

 

The eigen vectors corresponding to  satisfy the homogeneous system 

of algebraic equations: 

 

The problem of finding all eigen values and eigen vectors of a 

matrix  is called the complete problem of eigen values, and the problem 

of finding some eigen values of  is called the partial problem of eigen 

values. 

In the case of algebraic systems corresponding to a given problem, the 

latter problem arises most frequently. The application of traditional 

solution methods requires a considerable amount of calculation, in view 

of the poor separation of the eigen values of . In this case it is more 

effective to use modified gradient methods with spectrally equivalent 

operators and multi-grid methods 

14.3 EIGEN OSCILLATION 
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An oscillation occurring in a dynamical system in the absence of an 

external action by perturbing it at the initial moment by an "external 

action" from a state of equilibrium. The nature of eigen oscillations is 

determined mainly by the internal forces determined by the physical 

structure of the system. The energy necessary for the movement enters 

the system from the "external action" at the initial moment of motion. 

An example of eigen oscillations are the small oscillations of a 

conservative system with  degrees of freedom around a state of stable 

equilibrium. The equations of motion have the form 

 

(1) 

where the  are generalized coordinates and the ,  are constant 

coefficients. The general solution of (1) consists of the sum 

of  harmonic oscillations: 

 

where ,  are constants of integration,  are eigen frequencies, i.e. 

roots of the frequency equation 

 

(2) 

(where it is assumed that there are no zero or multiple frequencies), 

and  is the minor corresponding to the -th column and last row 

of the determinant (2). The variables ,  and  are 

the amplitude, phase and initial phase of the -th harmonic, respectively. 

It follows from this example that harmonic oscillations of the same 

frequency for all coordinates arise in phase or contra-phase, and the 

distribution of amplitudes of oscillations of a given eigen frequency in 

the coordinates is determined by the physical structure of the system. 

 

4.1 Check In Progress-I 
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Q. 1 Define The reduction of problem to a discrete model . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Define Eigen Oscillation.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

14.4 EIGENVALUES AND 

EIGENVECTORS TECHNIQUE 

In this section we will discuss the problem of finding two linearly 

independent solutions for the homogeneous linear system 

 

Let us first start with an example to illustrate the technique we will be 

developping. 

Example: Draw the direction field of the linear system 
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Answer: The following is the direction field: 

 

Remark: From the above example we notice that some solutions lie on 

straight lines (can you spot them?). So it is natural to investigate whether 

and when an homogeneous linear system has solutions which are 

straight-lines. 

14.4.1 Straight-Line Solutions 

Consider the homogeneous linear system (in the matricial notation) 

 

A straight-line solution is a vector function of the form 

, 

where  is a constant vector not equal to the zero vector  . The 

vector  is the direction vector of the line on which the solution lives. 

Keep in mind that the solutions of the system may describe trajectories of 

moving objects. So, in this case, we may think of it as an object moving 

along a straight line. 
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Remark: Note that if Y(t) is a straight-line solution, then  is also 

a straight-line solution. 

Clearly, we have 

. 

Therefore, we have 

. 

Since  and  are constant vectors, we deduce that  is a 

constant function. Denote it by 

 

Clearly, this is a first order differential equation which is linear as well as 

separable. Its solution is 

, 

where C is an arbitrary constant. So, if a straight-line solution exists, it 

must be of the form 

, 

where C is an arbitrary constant, and  is a non-zero constant vector 

which satisfies 

 

Note that we don't have to keep the constant C (read the above remark). 

Let us illustrate the above ideas with an example. 
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Example: Find any straight-line solution to the system 

 

Answer: First, let us find the constant vector 

 

such that  for some  . Easy computations give 

 

We have two cases: 

Case 1. If  , then  (since  is not the zero vector). The 

first equation gives  . In this case, the second equation 

forces  ; therefore we have 

. 

We may ignore the constant  (see the above remark). Therefore, the 

solution 

 

is a straight-line solution to the system. 
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Case 2. If  , then from the second equation we 

get  . The first equation reduces to  , or 

equivalently  . Therefore, we have 

. 

We may again ignore the constant  . Hence, the solution 

 

is a straight-line solution to the system. 

So, we have found two straight-line solutions 

 

Are these the only straight-lines? The answer is: "yes," but this will be 

discussed later. 

Theorem: Straight-Line Solutions 

Consider the homogeneous linear system 

 

Any straight-line solution may be found in the form 

, 

where  is a non-zero constant vector which satisfies 
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The constant  is called an eigenvalue of the matrix A, and  is called 

an eigenvector associated to the eigenvalue  of the matrix A. Clearly, 

if  is an eigenvector associated to , then  is also an eigenvector 

associated to  . Our next target is to find out how to search for the 

eigenvalues and eigenvectors of a matrix. 

14.4.2 Computation of Eiegenvalues 
Consider the matrix 

 

and assume that  is an eigenvalue of A. Then there must exist a non-zero 

vector , such that  . This equation may be 

rewritten as the algebraic system 

 

which is equivalent to the system 

 

Since both  and  can not be equal to zero at the same time, we must 

have the determinant of the system equal to zero. That is, 

, 

which reduces to the algebraic equation 

. 
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Note that the above equation is independent of the vector  . This 

equation is called the Characteristic Polynomial of the system. 

Example: Find the characteristic polynomial and the eigenvalues of the 

matrix 

 

Answer: The characteristic polynomial is given by 

. 

This is a quadratic equation. Its only roots are  and  . These 

are the eigenvalues of the matrix. 

14.4.3 Computation of Eiegen vectors 

Assume  is an eigenvalue of the matrix A. An eigenvector  associated 

to  is given by the matricial equation 

. 

Set . Then, the above matricial equation reduces to the 

algebraic system 

 

which is equivalent to the system 
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Since  is known, this is now a system of two equations and two 

unknowns. You must keep in mind that if  is an eigenvector, 

then  is also an eigenvector. 

Example: Consider the matrix 

. 

Find all the eigenvectors associated to the eigenvalue  . 

Answer: In the above example we checked that in fact  is an 

eigenvalue of the given matrix. Let  be an eigenvector associated to the 

eigenvalue  . Set  . Then we must have 

 

which reduces to the only equation 

, 

which yields  . Therefore, we have 

 

Note that we have all of the eigenvectors associated to the 

eigenvalue  . 

Conclusion 
In order to find the straight-line solution to the homogeneous linear 

system 
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, perform the 

following steps: 

First, we look for the eigenvalues through the characteristic polynomial 

. 

This is a quadratic equation which has one double real root, 

or two distinct real roots, or two complex roots. 

Once an eigenvalue  is found from the characteristic polynomial, then 

we look for the eigenvectors  associated to it through the matricial 

equation 

. 

If you find a parameter factorized in front of  , there will be no 

need to keep it; 

For an eigenvalue  and an associated eigenvector  , a straight-line 

solution will be given by 

. 

Remark: It is not hard to show that two straight-line solutions generated 

by two different eigenvalues are in fact linearly independent. Combined 

with the results of the previous section we now see how straight-lines 

may be used to help find the solutions of an homogeneous linear system. 

This technique is also related to the case of second order differential 

equation with constant coefficients. Indeed, consider the second order 

differential equation 

. 
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Set  . Then the second order differential equation is equivalent to 

the first order system 

 

The matrix coefficient of the system is 

. 

The characteristic polynomial is 

, 

which is equivalent to the equation 

. 

We recognize the characteristic equation associated to the second order 

differential equation. 

Check In Progress-II 

Q. 1 Define Straight Line Solution.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Find the characteristic polynomial and the eigenvalues of the matrix 
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Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

14.4.4 Real Eigenvalues 

Consider the linear homogeneous system 

 

In order to find the eigenvalues, consider the characteristic polynomial 

. 

In this section we will consider the case of the quadratic equation above 

when it has two distinct real roots (that is, 

if  ). The roots (eigenvalues) are 

, 

and 

. 

Here we know that the differential system has two linearly independent 

straight-line solutions 
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, 

where  (respectively  ) is an eigenvector associated to the 

eigenvalue  (respectively  ). We also know that the general solution 

(which describes all of the solutions) to the system has the form 

. 

Keep in mind that  and  are two constant vectors. 

Let us discuss the behavior of the solutions when  (meaning 

the future) and when  (meaning the past). Since the 

eigenvalues are distinct, one is bigger than the other one. Assume that we 

have 

. 

It is easy to see that we have 

 

Behavior when  

In this case we will consider the equation 

. 

Since 

, 

(because  ) then it is clear that when  , we have 
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. 

Behavior when  

In this case we will consider the equation 

 

Since 

 

(because  ) then it is clear that when  , we have 

 

Remark:Since the two eigenvalues are real numbers, we have three 

cases to consider depending on their signs: 

Case 1: Both are positive 

. 

In this case we have 

, 

meaning that the solutions emanate from the origin (if you go to 

the past, you will die at the origin). When  , Y(t) 

explodes. 
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In this case the origin plays the role of a source. Clearly, the 

origin is the only equilibrium point. 

Case 2: Both eigenvalues are negative 

. 

In this case we have 

, 

meaning that in the future the solutions die at the origin. 

When  , Y(t) explodes. 

 

In this case, the origin plays the role of a sink. Clearly, the origin is the 

only equilibrium point. 

Case 3: The eigenvalues have different signs 

. 
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In this case, the origin behaves like a saddle. 

 

Remark: It is clear from the above discussions that one may decide 

about the signs of the eigenvalues just by looking at some solutions on 

the phase plane (depending whether we have a saddle, a sink or a 

source). 

Example: Consider the three phase planes and decide about the sign-

distribution of the associated eigenvalues. 

Phase Plane I 

 

Phase Plane II 

 

Phase Plane III 
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Answer: For the phase-plane I, the origin is a source. Therefore, the two 

eigenvalues are both positive. 

For the phase-plane II, the origin is a saddle. Hence, the two 

eigenvalues are opposite signs. 

For the phase-plane III, the origin is a sink. Hence, the two 

eigenvalues are negative. 

Example: Consider the harmonic oscillator equation 

. 

Discuss the behavior of the spring-mass. 

Answer: First, translate this equation to the system 

, 

where 

 

The characteristic polynomial of this system is 

. 

The eigenvalues are 

. 
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It is clear that both of them are negative. Hence, the origin is a sink. 

Meaning that, regardless of the initial condition, the mass will always 

tend to its equilibrium, or rest, position. 

Note that if V is an eigenvector associated to the biggest 

eigenvalue  , then all the solutions tend to the origin tangent 

to that vector V. In this case we have 

. 

 

Remark: The case when one of the two eigenvalues is zero will be 

discussed in another section separately. 

Example 1 : Consider the harmonic oscillator with spring 

constant  , damping constant , and the mass m=1. 

(1)Write down the second order equation governing this physical system. 

Use the letter y for the spring's displacement from its rest position. 

(2)Convert this equation into a linear system of first order differential 

equations. 

(3)Solve the system. 

(4)Find the particular solution which satisfies the initial conditions 

 

(5)Discuss the long-term behavior of the system. Is this conclusion 

probable? 
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Answer:(1)The differential equation is 

. 

Using the values for the constants, we get 

. 

(2)Set y'=v, then we have 

. 

Hence, we have the system 

; 

(3)In order to solve the above system, we first need to find the 

eigenvalues of the system. Note that the matrix coefficient is 

. 

The characteristic equation is given by 

. 

Its roots are 

, 

which gives 

 

For every eigenvalue, we need to find an eigenvector. 

  . Let V be an associated eigenvector such that 
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. 

The vector V must satisfy the system of algebraic 

equations 

 

Clearly, the two equations reduce to the same equation 

. 

Hence, we have 

. 

We choose 

. 

  . Let V be an associated eigenvector such that, 

. 

The vector V must satisfy the system of algebraic 

equations 

 

Clearly, the two equations reduce to the same equation 

. 

Hence, we have 
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. 

We choose 

. 

Now we are ready to write down the general solution 

, 

where 

. 

(4)In order to find the solution to the harmonic oscillator system which 

satisfies the initial conditions y(0)= 0 and y'(0)=1, we need the general 

solution which gives y. From the general solution to the system we get 

, 

and  . The equation giving v is obvious and 

can be obtained from y since v=y' (you may want to check that we 

did not make any mistakes). The initial conditions imply 

 

Solving it we get 

. 

Therefore, the solution is 
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(5)The long-term behavior of the solution is now obvious since 

, 

meaning that the system tends to its rest position. Note that since 

the eigenvalues are both negative, it was clear from the outset that 

the solution will tend to its unique equilibrium position. 

Example 2 : Consider a harmonic oscillator for which the differential 

equation is 

, 

and suppose that mass m=1, the damping constant , and the 

spring constant . Rewrite this equation as a linear system of 

differential equations. Solve it, then find the particular solution which 

satisfies the initial conditions 

 

Answer. Set v=y'. Then we have 

 

This gives us the system 

 

which in matrix form may be rewritten as 

 

where 
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In order to solve this system, we need the characteristic equation 

 

Its roots are given by the quadratic formulas 

 

Note that you have to be very careful here since any mistake at finding 

correctly the roots will generate a far bigger mistakes and waist of time!! 

Next we need to find the associated eigenvectors. 

Case  . Denote by  the associated 

eigenvector. The system giving  is 

 

Since 

 

(which you should check as an exercise), then the two equations 

are identical. Hence we take  . If we 

choose  , we get 

 

Case  . Similar calculations give the associated 

eigenvector 
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Therefore the general solution is given by 

 

where  and  are two parameters. 

From the above equation giving Y, we may find the solution y to our 

second differential equation as 

 

We are almost done except that we need to find the specific solution 

which satisfies the initial condition 

 

These two conditions imply 

 

The second equation gives 

 

since  , we get  which 

implies  . Hence we have 

 

which implies 
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and 

 

which yields 

 

Example 3 : Consider the linear system 

. 

Find the matrix coefficient of the system. Then, discuss the fate of the 

long term behavior of the solutions. If they go to infinity, discuss how. 

Answer: The matrix coefficient of the system is 

. 

Note that if you have the wrong matrix coefficient the conclusion about 

the solutions may totally differ from the right answer! 

In order to find the general solution we need the characteristic equation 

. 

Its roots are given by the quadratic formulas 

, 

which gives  or  . Next, we need to find the associated 

eigenvectors. 
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Case  . Denote by  the associated eigenvector. 

The system giving  is 

. 

The two equations lead to the same equation  . If we 

choose  , we get 

. 

Case  . Denote by , the associated 

eigenvector. The system giving  is 

 

The second equation is worthless and the first one 

implies  . If we choose  , we get 

. 

Therefore, the general solution is given by 

, 

where  and  are two parameters. 

We know that since the system has one positive eigenvalue the solutions 

will tend to infinity as t goes to  . We also know that the solutions 

will get closer and closer to the straight-line solution which corresponds 

to the biggest eigenvalues. In this case, the line generated by the vector 
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, 

is clearly the x-axis. 

Check In Progress-III 

Problem : Consider the harmonic oscillator with spring 

constant  , damping constant , and the mass m=1. 

Q. 1 Convert Above equation into a linear system of first order 

differential equations. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q.2  Find the particular solution which satisfies the initial conditions 

 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . .  

14.4.5 Repeated Eigenvalues 
Consider the linear homogeneous system 

 

In order to find the eigenvalues consider the Characteristic polynomial 
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In this section, we consider the case when the above quadratic equation 

has double real root (that is if  ) the 

double root (eigenvalue) is 

 

In this case, we know that the differential system has the straight-line 

solution 

 

where  is an eigenvector associated to the eigenvalue  . We also 

know that the general solution (which describes all the solutions) of the 

system will be 

 

where  is another solution of the system which is linearly independent 

from the straight-line solution  . Therefore, the problem in 

this case is to find  . 

Search for a second solution. 

Let us use the vector notation. The system will be written as 

 

where A is the matrix coefficient of the system. Write 

 

The idea behind finding a second solution  , linearly independent 

from  , is to look for it as 

 

where  is some vector yet to be found. Since 

 

and 

 

(where we used  ), then (because  is a solution of the 

system) we must have 
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Simplifying, we obtain 

 

or 

 

This equation will help us find the vector  . Note that the vector  will 

automatically be linearly independent from  (why?). This will help 

establish the linear independence of  from  . 

Example. Find two linearly independent solutions to the linear system 

 

Answer. The matrix coefficient of the system is 

 

In order to find the eigenvalues consider the Characteristic polynomial 

 

Since  , we have a repeated eigenvalue 

equal to 2. Let us find the associated eigenvector  . Set 

 

Then we must have  which translates into 

 

This reduces to y=0. Hence we may take 

 

Next we look for the second vector  . The equation giving this vector 

is  which translates into the algebraic system 
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where 

 

Clearly we have y=1 and x may be chosen to be any number. So we 

take x=0 for example to get 

 

Therefore the two independent solutions are 

 

The general solution will then be 

 

14.5 QUALITATIVE ANALYSIS OF 

SYSTEMS WITH REPEATED 

EIGENVALUES 

Recall that the general solution in this case has the form 

 

where  is the double eigenvalue and  is the associated eigenvector. 

Let us focus on the behavior of the solutions when  (meaning 

the future). We have two cases 

If  , then clearly we have 

 

In this case, the equilibrium point (0,0) is a sink. On the other hand, 

when t is large, we have 

 

So the solutions tend to the equilibrium point tangent to the straight-line 

solution. Note that is  , then the solution is the straight-line 

solution which still tends to the equilibrium point. 
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Example 4 . Consider the system 

 

1.Find the general solution. 

2.Find the solution which satisfies the initial condition 

 

3.Draw some solutions in the phase-plane including the solution found in 

2. 

Answer. The matrix coefficient of the system is 

 

In order to find the eigenvalues consider the characteristic polynomial 

 

Since  , we have a repeated eigenvalue 

equal to 3. Let us find the associated eigenvector  . Set 

 

Then we must have  which translates into 

 

This reduces to y=x. Hence we may take 

 

Next we look for the second vector  . The equation giving this vector 

is  which translates into the algebraic system 

 

where 
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Clearly the two equations reduce to the equation y - x=1 or y = 1 + x, 

where x may be chosen to be any number. So if we take x=0 for example, 

we get 

 

Therefore the two independent solutions are 

 

The general solution will then be 

 

In order to find the solution which satisfies the initial condition 

 

we must have 

 

This implies  and  . Hence the solution is 

 

14.5.1 Systems with Zero as an Eigenvalue 
We discussed the case of system with two distinct real eigenvalues, 

repeated (nonzero) eigenvalue, and complex eigenvalues. But we did not 

discuss the case when one of the eigenvalues is zero. In fact, it is easy to 

see that this happen if and only if we have more than one equilibrium 

point (which is (0,0)). In this case, we will have a line of equilibrium 

points (the direction vector for this line is the eigenvector associated to 

the eigenvalue zero). 

Example. Find the general solution to 

 

Answer. The characteristic polynomial of this system is 
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which reduces to  . The eigenvalues 

are  and  . Let us find the associated eigenvectors. 

 

For  , set 

 

The equation  translates into 

 

The two equations are the same. So we have y = 2x. Hence an 

eigenvector is 

 

For  , set 

 

The equation  translates into 

 

The two equations are the same (as -x-y=0). So we have y = -x. 

Hence an eigenvector is 

 

Therefore the general solution is 

 

Note that all the solutions are line parallel to the 

vector  . When  , the trajectory goes to 

infinity. But when  , the trajectory converge to the equilibrium 

point on the line of equilibrium points (that is passing by (0,0) and 

having  as a direction vector). 
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The general case is very similar to this example. Indeed, assume that a 

system has 0 and  as eigenvalues. Hence if  is an eigenvector 

associated to 0 and  an eigenvector associated to  , then the general 

solution is 

 

We have two cases, whether  or  . 

 

If  , then  is an equilibrium point. 

If  , then the solution is a line parallel to the vector  . 

Moreover, we have when  

 if  , the solution tends away from the line of equilibrium; 

if  , the solution tends to the equilibrium point  along a line 

parallel to  . 

14.5.2 Complex Eigenvalues 
Consider the linear homogeneous system 

 

The Characteristic polynomial is 

 

In this section, we consider the case when the above quadratic equation 

has complex roots (that is if  ). The roots 

(eigenvalues) are 

 

where 
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In this case, the difficulty lies with the definition of 

 

In order to get around this difficulty we use Euler's formula 

 

Therefore, we have 

 

In this case, the eigenvector associated to  will have 

complex components. 

Example. Find the eigenvalues and eigenvectors of the matrix 

 

Answer. The characteristic polynomial is 

 

Its roots are 

 

Set  . The associated eigenvector V is given by the 

equation  . Set 

 

The equation  translates into 

 

Since  , then the two equations are the same (which 

should have been expected, do you see why?). Hence we 

have  which implies that an eigenvector is 
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We leave it to the reader to show that for the eigenvalue  , 

the eigenvector is 

 

Let us go back to the system 

 

with complex eigenvalues  . Note that if V, where 

 

is an eigenvector associated to  , then the vector 

 

(where  is the conjugate of v) is an eigenvector associated to  . 

On the other hand, we have seen that 

 

are solutions. Note that these solutions are complex functions. In order to 

find real solutions, we used the above remarks. Set 

 

then we have 

 

which gives 

 

Similarly we have 

 

Putting everything together we get 
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Clearly this implies  where 

 

It is easy to see that we have 

 

Since the sum and difference of solutions lead to another solution, then 

both  and  are solutions of the system. These are real solutions. It is 

very easy to check in fact that they are linearly independent. Let us 

summarize the above technique. 

Summary (of the complex case). Consider the system 

 

 

Write down the characteristic polynomial 

 

and find its roots 

 

we are assuming that  . Note that 

at this step, you need to know  and  . The common mistake is 

to forget to divide by 2. 

 

Find an eigenvector V associated to the eigenvalue  . 

Write down the eigenvector as 

 

 

Two linearly independent solutions are given by the formulas 
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The general solution is 

 

where  and  are arbitrary numbers. Note that in this case, we 

have 

 

Example. Consider the harmonic oscillator 

 

Find the general solution using the system technique. 

Answer. First we rewrite the second order equation into the system 

 

The matrix coefficient of this system is 

 

We have already found the eigenvalues and eigenvectors of this matrix. 

Indeed the eigenvalues are 

 

Hence we have 

 

The eigenvector associated to  is 

 

Next we write down the two linearly independent solutions 
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and 

 

The general solution of the equivalent system is 

 

or

 

Below we draw some solutions. 

Since we are looking for the general solution of the differential equation, 

we only consider the first component. Therefore we have 

 

You may want to check that the second component is just the derivative 

of y. 

14.5.3 Qualitative Analysis of Systems with 

Complex Eigenvalues 
Recall that in this case, the general solution is given by 

 

The behavior of the solutions in the phase plane depends on the real 

part  . Indeed, we have three cases: 

 the case:  . The solutions tend to the origin (when  ) 

while spiraling. In this case, the equilibrium point is called a spiral sink. 

 

 The case:  The solutions explode or get away from the 

origin (when  ) while spiraling. In this case, the 

equilibrium point is called a spiral source. 
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 The case:  The solutions are periodic. This means that the 

trajectories are closed curves or cycles. In this case, the 

equilibrium point is called a center. 

14.6 LET’S SUM UP  

In this unit we learnt reduction of the integro-interpolation method. For 

example, consider the problem 

 

(3) 

 

We learnt A straight-line solution is a vector function of the form 

, 

We learnt the matrix 

 

and assume that  is an eigenvalue of A.  

Then there must exist a non-zero vector , such that  . 

We also studied Complex Eigen Components  

 

In this case, the eigenvector associated to  will have complex  

components. 

(4) 

14.7 KEYWORD 
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EigenValues : each of a set of values of a parameter for which a 

differential equation has a non-zero solution (an eigenfunction) under 

given conditions. 

Eigen Vector : a nonzero vector that is mapped by a given linear 

transformation of a vector space onto a vector that is the product of a 

scalar multiplied by the original vector. — called also 

characteristic vector 

Tri-diagonal : tridiagonal (not comparable) (linear algebra, of a matrix) 

Having nonzero elements only in the main diagonal and 

the diagonals directly above and below it. 

Discrete Model : Discrete modelling is the discrete analogue of 

continuous modelling. In discrete modelling, formulae are fit 

to discrete data—data that could potentially take on only a countable set 

of values, such as the integers, and which are not infinitely divisible. 

14.8 QUESTIONS FOR REVIEW 

Q. 1 Find any straight-line solution to the system 

 

Q. 2 Consider the matrix 

. 

Find all the eigenvectors associated to the eigenvalue  . 

Q. 3 Find the general solution to 

 

 

Q. 4 Find the eigenvalues and eigenvectors of the matrix 
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Q. 5 Consider the harmonic oscillator 

 

Find the general solution using the system technique 

Q. 6 Consider the matrix 

               [
  
    

] 

Find all the eigenvectors associated to the eigenvalue  . 
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14.10 ANSWER TO CHECK IN PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 3 

 Q. 2 Check in Section 4 

Check In progress-II 

Answer Q. 1 Check in Section 5.1 

 Q. 2 Check in Section 5.2 

Check In progress-III 

Answer Q. 1 Check in Section 5.5 

          Q. 2 Check in Section 5.5 

 


